13.第五章 参数假设检验(2)

第五章 参数假设检验(2)

1.单正态总体均值假设检验

先讨论单正态总体 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)的均值检验。分为单边检验 H 0 : μ = μ 0 ↔ H 1 : μ ≠ μ 0 H_0:\mu=\mu_0\leftrightarrow H_1:\mu\ne \mu_0 H0:μ=μ0H1:μ=μ0与双边检验,这里 μ 0 \mu_0 μ0和检验水平 α \alpha α是给定的数, X = ( X 1 , ⋯   , X n ) \boldsymbol X=(X_1,\cdots,X_n) X=(X1,,Xn)是从正态总体中抽取的简单随机样本。

对于方差 σ 2 \sigma^2 σ2已知的情况,以 X ˉ = 1 n ∑ i = 1 n X i \bar X=\frac1n\sum_{i=1}^nX_i Xˉ=n1i=1nXi为检验统计量:

  1. H 0 : μ = μ 0 ↔ H 1 : μ ≠ μ 0 H_0:\mu=\mu_0\leftrightarrow H_1:\mu\ne\mu_0 H0:μ=μ0H1:μ=μ0

    如果 H 0 H_0 H0成立,那么 ∣ X ˉ − μ 0 ∣ |\bar X-\mu_0| Xˉμ0不应该过大,所以拒绝域的形式应为 D = { ∣ X ˉ − μ 0 ∣ > A } D=\{|\bar X-\mu_0|>A\} D={Xˉμ0>A},将其标准化,得到 D = { n ∣ X ˉ − μ 0 ∣ σ > c } D=\{\frac{\sqrt{n}|\bar X-\mu_0|}{\sigma}>c\} D={σn Xˉμ0>c}。要确定这个 c c c,求其去真概率
    P μ { n ∣ x ˉ − μ 0 ∣ / σ > c ∣ μ = μ 0 } = α \mathbf P_\mu\{\sqrt{n}|\bar x-\mu_0|/\sigma>c|\mu=\mu_0\}=\alpha Pμ{n xˉμ0/σ>cμ=μ0}=α
    得到 c = α / 2 c=\alpha/2 c=α/2,所以拒绝域的形式为
    D = { ∣ X ˉ − μ 0 ∣ > σ u α / 2 n } D=\{|\bar X-\mu_0|>\frac{\sigma u_{\alpha/2}}{\sqrt n}\} D={Xˉμ0>n σuα/2}

  2. H 0 : μ ≤ μ 0 ↔ H 1 : μ > μ 0 H_0:\mu\le\mu_0\leftrightarrow H_1:\mu>\mu_0 H0:μμ0H1:μ>μ0

    如果 H 0 H_0 H0成立,那么 ( X ˉ − μ 0 ) (\bar X-\mu_0) (Xˉμ0)不应该过大,所以拒绝域的形式应为 D = { X ˉ − μ 0 > A } D=\{\bar X-\mu_0>A\} D={Xˉμ0>A},即 D = { n ( X ˉ − μ 0 ) σ > c } D=\{\frac{\sqrt n(\bar X-\mu_0)}{\sigma}>c\} D={σn (Xˉμ0)>c},去真概率为
    P μ { n ( X ˉ − μ 0 ) σ > c ∣ μ ≤ μ 0 } = α \mathbf P_\mu\{\frac{\sqrt n(\bar X-\mu_0)}{\sigma}>c|\mu\le\mu_0\}=\alpha Pμ{σn (Xˉμ0)>cμμ0}=α
    这里 μ \mu μ不是一个定值,所以要在所有去真概率中取最大的,事实上等价于 μ \mu μ最大。于是
    P μ { n ( X ˉ − μ 0 ) σ > c ∣ μ = μ 0 } = α c = u α \mathbf P_\mu\{\frac{\sqrt n(\bar X-\mu_0)}{\sigma}>c|\mu=\mu_0\}=\alpha\\ c=u_\alpha Pμ{σn (Xˉμ0)>cμ=μ0}=αc=uα
    所以拒绝域为 D = { X ˉ − μ 0 > σ u α n } D=\{\bar X-\mu_0>\frac{\sigma u_\alpha}{\sqrt n}\} D={Xˉμ0>n σuα}

  3. H 0 : μ ≥ μ 0 ↔ H 1 : μ < μ 0 H_0:\mu\ge\mu_0\leftrightarrow H_1:\mu<\mu_0 H0:μμ0H1:μ<μ0

    如果 H 0 H_0 H0成立,则 X ˉ − μ 0 \bar X-\mu_0 Xˉμ0不应该过小,因此拒绝域为 D = { n ( X ˉ − μ 0 ) σ < c } D=\{\frac{\sqrt n(\bar X-\mu_0)}{\sigma}<c\} D={σn (Xˉμ0)<c},(最大的)去真概率为
    sup ⁡ μ ≥ μ 0 P μ { n ( X ˉ − μ 0 ) σ < c ∣ μ ≥ μ 0 } = α P μ { n ( X ˉ − μ 0 ) σ < c ∣ μ = μ 0 } = α c = u 1 − α = − u α \sup_{\mu\ge\mu_0}\mathbf P_\mu\{\frac{\sqrt n(\bar X-\mu_0)}{\sigma}<c|\mu\ge\mu_0\}=\alpha\\ \mathbf P_\mu\{\frac{\sqrt n(\bar X-\mu_0)}{\sigma}<c|\mu=\mu_0\}=\alpha\\ c=u_{1-\alpha}=-u_\alpha μμ0supPμ{σn (Xˉμ0)<cμμ0}=αPμ{σn (Xˉμ0)<cμ=μ0}=αc=u1α=uα
    所以拒绝域为 D = { X ˉ − μ 0 < − σ u α n } D=\{\bar X-\mu_0<-\frac{\sigma u_{\alpha}}{\sqrt n}\} D={Xˉμ0<n σuα}

由于以上三种检验最后都落在标准正态检验统计量 U U U,因此已知方差的均值检验也被称为 U U U检验。

对于方差 σ 2 \sigma^2 σ2未知的均值检验,也有以上三种问题。但是此时构造不出标准正态变量 n ( X ˉ − μ 0 ) σ \frac{\sqrt n(\bar X-\mu_0)}{\sigma} σn (Xˉμ0)。由于之前证明过 n ( X ˉ − μ ) S ∼ t n − 1 , S 2 = 1 n − 1 ∑ i = 1 n ( X ˉ − X i ) 2 \frac{\sqrt n(\bar X-\mu)}{S}\sim t_{n-1},S^2=\frac1{n-1}\sum_{i=1}^n(\bar X-X_i)^2 Sn (Xˉμ)tn1,S2=n11i=1n(XˉXi)2,所以用
T = n ( X ˉ − μ 0 ) S T=\frac{\sqrt n(\bar X-\mu_0)}{S} T=Sn (Xˉμ0)
作检验统计量,将以上三种情况中的 u u u分位数换成 t n − 1 t_{n-1} tn1分位数即可。由于这三种检验使用检验统计量 T T T,因此未知方差的均值检验被称为 T T T检验。

2.单正态总体方差假设检验

正态检验也有单边与双边,分为均值已知和未知的情况。正态总体为 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2),在其中抽取简单随机样本 X = ( X 1 , ⋯   , X n ) \boldsymbol X=(X_1,\cdots,X_n) X=(X1,,Xn),这里 σ 0 2 \sigma_0^2 σ02 α \alpha α是给定的数。

首先对于均值 μ \mu μ未知的情形,此时 S 2 = 1 n − 1 ∑ i = n ( X i − X ˉ ) 2 S^2=\frac1{n-1}\sum_{i=}^n(X_i-\bar X)^2 S2=n11i=n(XiXˉ)2 σ 2 \sigma^2 σ2的无偏估计,且 ( n − 1 ) S 2 σ 2 ∼ χ n − 1 2 \frac{(n-1)S^2}{\sigma^2}\sim \chi^2_{n-1} σ2(n1)S2χn12

  1. H 0 : σ 2 = σ 0 2 ↔ H 1 : σ 2 ≠ σ 0 2 H_0:\sigma^2=\sigma_0^2\leftrightarrow H_1:\sigma^2\ne\sigma_0^2 H0:σ2=σ02H1:σ2=σ02

    如果 H 0 H_0 H0成立,那么 ( n − 1 ) S 2 σ 2 \frac{(n-1)S^2}{\sigma^2} σ2(n1)S2既不应该过大也不应该过小,因此拒绝域的形式应为 D = { ( n − 1 ) S 2 σ 2 < c 或 ( n − 1 ) S 2 σ 2 > d } D=\{\frac{(n-1)S^2}{\sigma^2}<c或\frac{(n-1)S^2}{\sigma^2}>d\} D={σ2(n1)S2<cσ2(n1)S2>d}。去真概率为
    P σ { ( n − 1 ) S 2 σ 2 < c 或 ( n − 1 ) S 2 σ 2 > d ∣ σ 2 = σ 0 2 } = α \mathbf P_\sigma\{\frac{(n-1)S^2}{\sigma^2}<c或\frac{(n-1)S^2}{\sigma^2}>d|\sigma^2=\sigma_0^2\}=\alpha Pσ{σ2(n1)S2<cσ2(n1)S2>dσ2=σ02}=α
    取其等尾区间,得到 c = χ n − 1 2 ( 1 − α / 2 ) , d = χ 2 n − 1 ( α / 2 ) c=\chi^2_{n-1}(1-\alpha/2),d=\chi^2{n-1}(\alpha/2) c=χn12(1α/2),d=χ2n1(α/2),所以拒绝域为 D = { ( n − 1 ) S 2 σ 0 2 < χ n − 1 2 ( 1 − α / 2 ) 或 ( n − 1 ) S 2 σ 0 2 > χ n − 1 2 ( α / 2 ) } D=\{\frac{(n-1)S^2}{\sigma_0^2}<\chi^2_{n-1}(1-\alpha/2)或\frac{(n-1)S^2}{\sigma_0^2}>\chi^2_{n-1}(\alpha/2)\} D={σ02(n1)S2<χn12(1α/2)σ02(n1)S2>χn12(α/2)}

  2. H 0 : σ 2 ≤ σ 0 2 ↔ H 1 : σ 2 > σ 0 2 H_0:\sigma^2\le\sigma_0^2\leftrightarrow H_1:\sigma^2>\sigma^2_0 H0:σ2σ02H1:σ2>σ02

    运用同上的方法,可以得到拒绝域为 D = { ( n − 1 ) S 2 σ 2 > χ n − 1 2 ( α } D=\{\frac{(n-1)S^2}{\sigma^2}>\chi^2_{n-1}(\alpha\} D={σ2(n1)S2>χn12(α}

  3. H 0 : σ 2 ≥ σ 0 2 ↔ H 1 : σ 2 < σ 0 2 H_0:\sigma^2\ge\sigma_0^2\leftrightarrow H_1:\sigma^2<\sigma_0^2 H0:σ2σ02H1:σ2<σ02

    运用同上的方法,可以得到拒绝域为 D = { ( n − 1 ) S 2 σ 2 < χ n − 1 2 ( 1 − α / 2 ) } D=\{\frac{(n-1)S^2}{\sigma^2}<\chi^2_{n-1}(1-\alpha/2)\} D={σ2(n1)S2<χn12(1α/2)}

对于均值 μ \mu μ已知的情形,有 σ 2 \sigma^2 σ2的无偏估计 S n 2 = 1 n ∑ i = 1 n ( X i − μ ) 2 S_n^2=\frac1n\sum_{i=1}^n(X_i-\mu)^2 Sn2=n1i=1n(Xiμ)2,且 n S n 2 σ 2 ∼ χ n 2 \frac{nS_n^2}{\sigma^2}\sim \chi^2_n σ2nSn2χn2,所以运用类似的方法,把检验统计量改为 n S n 2 σ 2 \frac{nS_n^2}{\sigma^2} σ2nSn2,分位数换成 χ n 2 \chi^2_n χn2的,就可以得到类似的拒绝域。这种方差的检验被称为 χ 2 \chi^2 χ2检验。

3.双正态总体均值差假设检验

以下假设 X = ( X 1 , ⋯   , X m ) \boldsymbol X=(X_1,\cdots,X_m) X=(X1,,Xm)是取自总体 N ( μ 1 , σ 1 2 ) N(\mu_1,\sigma_1^2) N(μ1,σ12)的简单随机样本, Y = ( Y 1 , ⋯   , Y n ) \boldsymbol Y=(Y_1,\cdots,Y_n) Y=(Y1,,Yn)的是取自总体 N ( μ 2 , σ 2 2 ) N(\mu_2,\sigma_2^2) N(μ2,σ22)的简单随机样本,且 X , Y \boldsymbol X,\boldsymbol Y X,Y相互独立。双正态总体均值差的假设检验主要围绕着几种特殊情况进行讨论,并且只讨论双边问题 H 0 : μ 2 − μ 1 = μ 0 ↔ H 1 : μ 2 − μ 1 ≠ μ 0 H_0:\mu_2-\mu_1=\mu_0\leftrightarrow H_1:\mu_2-\mu_1\neq \mu_0 H0:μ2μ1=μ0H1:μ2μ1=μ0

  1. 当方差 σ 1 2 , σ 2 2 \sigma_1^2,\sigma_2^2 σ12,σ22均已知时的均值差检验。

    此时有 Y ˉ − X ˉ ∼ N ( μ 2 − μ 1 , σ 1 2 / m + σ 2 2 / n ) \bar Y-\bar X\sim N(\mu_2-\mu_1,\sigma_1^2/m+\sigma_2^2/n) YˉXˉN(μ2μ1,σ12/m+σ22/n),因此可以取检验统计量为
    U = Y ˉ − X ˉ − μ 0 σ 1 2 / m + σ 2 2 / n ∼ N ( 0 , 1 ) U=\frac{\bar Y-\bar X-\mu_0}{\sqrt {\sigma_1^2/m+\sigma_2^2/n}}\sim N(0,1) U=σ12/m+σ22/n YˉXˉμ0N(0,1)
    这样就与单正态总体均值检验类似了,此时运用的也是 U U U检验。

  2. 当方差未知但相等,即 σ 1 2 = σ 2 2 = σ 2 \sigma_1^2=\sigma_2^2=\sigma^2 σ12=σ22=σ2时的均值差检验。

    此时令 S w 2 = 1 m + n − 2 [ ( m − 1 ) S 1 2 + ( n − 1 ) S 2 2 ] S_w^2=\frac{1}{m+n-2}[(m-1)S_1^2+(n-1)S_2^2] Sw2=m+n21[(m1)S12+(n1)S22],则有
    T = Y ˉ − X ˉ − μ 0 S w m n m + n ∼ t m + n − 2 T=\frac{\bar Y-\bar X-\mu_0}{S_w}\sqrt {\frac{mn}{m+n}}\sim t_{m+n-2} T=SwYˉXˉμ0m+nmn tm+n2
    这样就可以用 t t t分布来检验均值差了,这叫两样本 t t t检验。

  3. 当样本容量相等即 m = n m=n m=n时的均值差检验。

    在实际应用中,需要保证成对数据来自两个独立的正态总体是不容易的,但是如果能保证独立,就可以令 Z i = Y i − X i Z_i=Y_i-X_i Zi=YiXi Z ∼ N ( μ 2 − μ 1 , σ 1 2 + σ 2 2 ) Z\sim N(\mu_2-\mu_1,\sigma_1^2+\sigma_2^2) ZN(μ2μ1,σ12+σ22),这样就与单正态总体均值检验类似了,此时运用的是 t t t检验。

4.双正态总体方差比假设检验

以下假设 X = ( X 1 , ⋯   , X m ) \boldsymbol X=(X_1,\cdots,X_m) X=(X1,,Xm)是取自总体 N ( μ 1 , σ 1 2 ) N(\mu_1,\sigma_1^2) N(μ1,σ12)的简单随机样本, Y = ( Y 1 , ⋯   , Y n ) \boldsymbol Y=(Y_1,\cdots,Y_n) Y=(Y1,,Yn)的是取自总体 N ( μ 2 , σ 2 2 ) N(\mu_2,\sigma_2^2) N(μ2,σ22)的简单随机样本,且 X , Y \boldsymbol X,\boldsymbol Y X,Y相互独立。下面讨论方差比 σ 2 2 / σ 1 2 \sigma_2^2/\sigma_1^2 σ22/σ12 c c c的双边检验问题。这里记 X ˉ , Y ˉ \bar X,\bar Y Xˉ,Yˉ为两个样本的均值, S 1 2 , S 2 2 S_1^2,S_2^2 S12,S22为两个样本方差的无偏估计。

  1. μ 1 , μ 2 \mu_1,\mu_2 μ1,μ2未知时的方差比假设检验

    σ 2 2 / σ 1 2 = c \sigma_2^2/\sigma_1^2=c σ22/σ12=c的前提下,有
    F = S 1 2 S 2 2 1 c ∼ F m − 1 , n − 1 F=\frac{S_1^2}{S_2^2}\frac{1}{c}\sim F_{m-1,n-1} F=S22S12c1Fm1,n1
    取等尾区间,得到检验域为 D = { F < F m − 1 , n − 1 ( 1 − α / 2 ) 或 F > F m − 1 , n − 1 ( α / 2 ) } D=\{F<F_{m-1,n-1}(1-\alpha/2)或F>F_{m-1,n-1}(\alpha/2)\} D={F<Fm1,n1(1α/2)F>Fm1,n1(α/2)}

  2. μ 1 , μ 2 \mu_1,\mu_2 μ1,μ2已知时,取 S 1 ∗ 2 = 1 m ∑ i = 1 m ( X i − μ 1 2 ) , S 2 ∗ 2 = 1 n ∑ j = 1 n ( Y i − μ 2 ) 2 S_{1*}^2=\frac1m\sum_{i=1}^m (X_i-\mu_1^2),S_{2*}^2=\frac1n\sum_{j=1}^n (Y_i-\mu_2)^2 S12=m1i=1m(Xiμ12),S22=n1j=1n(Yiμ2)2,可以类似地得到
    F = S 1 ∗ 2 S 2 ∗ 2 1 c ∼ F m , n F=\frac{S_{1*}^2}{S_{2*}^2}\frac1c\sim F_{m,n} F=S22S12c1Fm,n
    因此检验域只需将上面的 F F F改为此时的计算方式,并把 F m − 1 , n − 1 F_{m-1,n-1} Fm1,n1分位数改成 F m , n F_{m,n} Fm,n的即可。这种检验双样本方差比的方式

5.极限分布为正态分布的参数检验

这类问题是大样本问题,一般方差均未知且不等。取检验统计量为
U ∗ = Y ˉ − X ˉ − μ 0 S 1 2 / m + S 2 2 / n ⟶ L N ( 0 , 1 ) U^*=\frac{\bar Y-\bar X-\mu_0}{\sqrt {S_1^2/m+S_2^2/n}}\stackrel{\mathscr L}{\longrightarrow }N(0,1) U=S12/m+S22/n YˉXˉμ0LN(0,1)
如果样本数量不大,则换成
T ∗ = Y ˉ − X ˉ − μ 0 S 1 2 / m + S 2 2 / n ∼ t r r = S ∗ 4 [ S 1 4 m 2 ( m − 1 ) + S 2 4 n 2 ( n − 1 ) ] , S ∗ 2 = S 1 2 m + S 2 2 n . T_*=\frac{\bar Y-\bar X-\mu_0}{\sqrt {S_1^2/m+S_2^2/n}}\sim t_r\\ r=\frac{S_*^4}{\left[\frac{S_1^4}{m^2(m-1)}+\frac{S_2^4}{n^2(n-1)}\right]},S_*^2=\frac{S_1^2}{m}+\frac{S_2^2}{n}. T=S12/m+S22/n YˉXˉμ0trr=[m2(m1)S14+n2(n1)S24]S4,S2=mS12+nS22.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值