04.第二章 随机变量与分布函数(2)

第二章 随机变量与分布函数(2)

1.离散型随机变量

离散型随机变量:随机变量 ξ \xi ξ的值只能取至多可列个,则称为离散型随机变量。这里的可列,包含了有限与无限可列,而既然可列,就可以将所有的可能取值列成 x 1 , x 2 , ⋯   , x n , ⋯ x_1,x_2,\cdots,x_n,\cdots x1,x2,,xn,的形式。要完整地刻画离散型随机变量,只要对这些单点Borel集求概率即可,也就是求出 P ( ξ = x i ) P(\xi =x_i) P(ξ=xi)的值,这个值通常记作 p i p_i pi p ( x i ) p(x_i) p(xi)

  • 单点集也是一种Borel集,如单点5,只要构造一系列左开右闭区间 ( 5 − 1 n , 5 ] (5-\frac1n,5] (5n1,5],并将 n n n取至无穷再取这些集合的交集即可。

一旦求出所有的 p i p_i pi,就可以将取值-概率列成表格的形式,称为 ξ \xi ξ的分布列(概率分布),它包含 ξ \xi ξ的可能取值与取这些值的概率:
( x 1 x 2 ⋯ x n ⋯ p 1 p 2 ⋯ p n ⋯ ) . \left( \begin{matrix} x_1&x_2&\cdots&x_n&\cdots\\ p_1&p_2&\cdots&p_n&\cdots \end{matrix} \right). (x1p1x2p2xnpn).
并且有 p ( x i ) > 0 , ∑ i = 1 ∞ p i = 1 p(x_i)>0,\sum\limits_{i=1}^\infty p_i=1 p(xi)>0,i=1pi=1。由概率的可列可加性,对任一Borel集 B B B,有
P ( ξ ( ω ) ∈ B ) = ∑ x i ∈ B p i . P(\xi(\omega)\in B)=\sum_{x_i\in B}p_i. P(ξ(ω)B)=xiBpi.
有以下几种常用的离散型随机变量与分布:

  1. 0-1分布: P ( ξ = 0 ) = p , P ( ξ = 1 ) = q = 1 − p P(\xi=0)=p,P(\xi=1)=q=1-p P(ξ=0)=p,P(ξ=1)=q=1p。这常用于非数值型随机试验的抽象,即一个随机试验只可能有事件发生与不发生两个结果,则将发生对应于取值1,不发生对应于取值0, p p p称为成功概率。

    0-1分布也被称为Bernoulli分布。如果只能取两个值但不一定是0、1,则称为两点分布。

  2. 二项分布: P ( ξ = k ) = C n k p k q n − k , p + q = 1 , p , q > 0 , k = 0 , 1 , ⋯   , n P(\xi=k)=C_n^k p^k q^{n-k},p+q=1,p,q>0,k=0,1,\cdots,n P(ξ=k)=Cnkpkqnk,p+q=1,p,q>0,k=0,1,,n,满足这种形式的随机变量称为服从二项分布,记作 B ( n , p ) B(n,p) B(n,p)。二项分布可以视作Bernoulli试验重复 n n n次后的成功次数。

  3. 泊松分布: P ( ξ = k ) = λ k k ! e − λ , λ > 0 , k = 0 , 1 , 2 , ⋯ P(\xi=k)=\frac{\lambda ^k}{k!}e^{-\lambda },\lambda >0,k=0,1,2,\cdots P(ξ=k)=k!λkeλ,λ>0,k=0,1,2,,满足这种形式的随机变量称为服从泊松分布,记作 P ( λ ) P(\lambda ) P(λ)。泊松分布是应用很广泛的一种分布族,可以用来描述独立的随机现象的到来。

    当二项分布实验次数 n n n很大时,近似于服从参数为 λ = n p \lambda =np λ=np的泊松分布。

  4. 几何分布: P ( ξ = k ) = p q k − 1 , p + q = 1 , p , q > 0 , k = 1 , 2 , ⋯ P(\xi=k)=pq^{k-1},p+q=1,p,q>0,k=1,2,\cdots P(ξ=k)=pqk1,p+q=1,p,q>0,k=1,2,,满足这种形式的随机变量称为服从几何分布,记作 G ( p ) G(p) G(p)。几何分布可以看成Bernoulli试验在第 k k k次时首次成功的概率。

    几何分布最重要的性质是无记忆性,即 P ( ξ > m + k ∣ ξ > m ) = P ( ξ > k ) P(\xi >m+k|\xi>m)=P(\xi>k) P(ξ>m+kξ>m)=P(ξ>k),也就是说,前 m m m次的失败都可以不作考虑,从下一次重新开始计算。

  5. 超几何分布:适用于抽样检测的分布,不常用。

离散型随机变量的分布函数,可以直观地由定义得出,假设一切取值 x 1 , x 2 , ⋯   , x n , ⋯ x_1,x_2,\cdots,x_n,\cdots x1,x2,,xn,是从小到大排列的,也就是 x 1 < x 2 < ⋯ x_1<x_2<\cdots x1<x2<,那么 P ( ξ ≤ x ) P(\xi\le x) P(ξx)只需要查看哪一个最大的 x k ≤ x x_k\le x xkx,再由离散型随机变量概率的可列可加性将 p 1 , ⋯   , p k p_1,\cdots,p_k p1,,pk相加即可得到 F ( x ) F(x) F(x)。注意,由于 ξ < x i \xi<x_i ξ<xi ξ ≤ x i \xi\le x_i ξxi的样本点差了一个 ξ = x i \xi=x_i ξ=xi,因此概率不同,也就是说 F ( x − 0 ) < F ( x ) F(x-0)<F(x) F(x0)<F(x),说明分布函数不具有左连续性

2.连续型随机变量

连续型随机变量的取值就不止是可列的,而是不可列的,这时候概率分布列就不能用来描述随机变量的分布了。但有一种特殊的分布函数,其形式满足
F ξ ( x ) = ∫ − ∞ x p ξ ( t ) d t . F_\xi(x)=\int_{-\infty}^x p_\xi(t)dt. Fξ(x)=xpξ(t)dt.
只要能找到这样的非负可积函数 p ξ ( x ) p_\xi(x) pξ(x),不论 p ξ ( x ) p_\xi(x) pξ(x)是分段的还是定义域被限制的,随机变量 ξ \xi ξ都被称为连续型随机变量,而 p ξ ( x ) p_\xi(x) pξ(x)称为(概率)密度函数,在不引起混淆的情况下也可以写成 p ( x ) p(x) p(x)

由于密度函数由积分定义,就有
P ( ξ ≤ x ) = F ξ ( x ) = ∫ − ∞ x p ξ ( t ) d t , P(\xi\le x)=F_\xi(x)=\int_{-\infty}^x p_\xi (t)dt, P(ξx)=Fξ(x)=xpξ(t)dt,
再由积分的可加性,可以证明对任意Borel集 B B B P ( ξ ∈ B ) = ∫ B p ξ ( t ) d t P(\xi\in B)=\int_Bp_\xi(t)dt P(ξB)=Bpξ(t)dt。特别当 B B B R \R R时,有
P ( ξ ∈ R ) = 1 = ∫ − ∞ ∞ p ( t ) d t , P(\xi\in \R)=1=\int_{-\infty}^\infty p(t)dt, P(ξR)=1=p(t)dt,
这就是密度函数的规范性,即密度函数在 R \R R上的积分必定为1。而落在每个单点 c c c的概率 P ( ξ = c ) P(\xi=c) P(ξ=c)
P ( ξ = c ) = F ( c ) − F ( c − 0 ) = lim ⁡ h → 0 + ∫ c − h c p ( t ) d t = 0 , P(\xi=c)=F(c)-F(c-0)=\lim_{h\to 0^+}\int_{c-h}^c p(t)dt=0, P(ξ=c)=F(c)F(c0)=h0+limchcp(t)dt=0,
即连续随机变量落在每一个单点处的概率都是0,这也说明连续型随机变量不能用分布列来刻画。

并且,从直观角度来看,概率密度函数实际上刻画了随机变量 ξ \xi ξ落在每个位置的机会大小,每个区间上的曲边梯形面积就代表了 ξ \xi ξ落入每个区间的大小。可以将积分看作一种特殊的求和,这样,概率密度函数与概率分布列之间其实有着相通、且更为良好的性质。

对于连续性随机变量,在 p ( x ) p(x) p(x)的连续点处 F ( x ) F(x) F(x)是可导的,并且有 F ′ ( x ) = p ( x ) F'(x)=p(x) F(x)=p(x),这就为求密度函数提供了桥梁,也可以验证 F ( x ) F(x) F(x)是否是一个连续型随机变量的分布函数。实际上,由连续随机变量积分的定义, F ( x ) F(x) F(x)应当是绝对连续的,也是处处连续的

有以下几种常用的连续型随机变量与分布:

  1. 均匀分布:
    p ( x ) = 1 b − a ⋅ I ( a ≤ x ≤ b ) . p(x)=\frac{1}{b-a}\cdot I_{(a\le x\le b)}. p(x)=ba1I(axb).
    称为服从 [ a , b ] [a,b] [a,b]上的均匀分布,记作 U ( a , b ) U(a,b) U(a,b)。它形式上表现为在 [ a , b ] [a,b] [a,b]之间每一点处概率密度都相等,再填上正则化因子 1 b − a \frac 1{b-a} ba1使得密度函数的积分为1。

    最常用的均匀分布是 U ( 0 , 1 ) U(0,1) U(0,1),如果 ξ ∼ U ( a , b ) \xi\sim U(a,b) ξU(a,b),直观上可以看出 ξ − a b − a \frac{\xi-a}{b-a} baξa服从 U ( 0 , 1 ) U(0,1) U(0,1),以后也可以证明。

  2. 正态分布:
    p ( x ) = 1 2 π σ e − ( x − a ) 2 2 σ 2 , a ∈ R , σ > 0. p(x)=\frac{1}{\sqrt {2\pi}\sigma}e^{-\frac{(x-a)^2}{2\sigma^2}},\quad a\in \R,\sigma>0. p(x)=2π σ1e2σ2(xa)2,aR,σ>0.
    称为服从正态分布,记作 N ( a , σ 2 ) N(a,\sigma^2) N(a,σ2)。其中,呈现正态分布密度函数形状的主体(称为分布的)是 e − ( x − a ) 2 2 σ 2 e^{-\frac{(x-a)^2}{2\sigma^2}} e2σ2(xa)2,前面的 1 2 π σ \frac{1}{\sqrt {2\pi}\sigma} 2π σ1是保证积分为1的正则化因子,可以证明(略看即可)
    ∫ − ∞ ∞ e − ( x − a ) 2 2 σ 2 d x = t = x − a σ ∫ − ∞ ∞ σ e − t 2 2 d t , \begin{aligned} &\int_{-\infty}^\infty e^{-\frac{(x-a)^2}{2\sigma^2}}dx\\ \xlongequal{t=\frac{x-a}{\sigma}}&\int_{-\infty}^\infty \sigma e^{-\frac{t^2}{2}}dt, \end{aligned} t=σxa e2σ2(xa)2dxσe2t2dt,
    取其平方,为
    ∫ − ∞ ∞ σ e − t 2 2 d t ∫ − ∞ ∞ σ e − s 2 2 d s = σ 2 ∫ − ∞ ∞ ∫ − ∞ ∞ e − t 2 + s 2 2 d t d s = 球 变 换 σ 2 ∫ 0 2 π d θ ∫ 0 ∞ r e − r 2 2 d r = t = r 2 2 2 π σ 2 ∫ 0 ∞ e − t d t = 2 π σ 2 . \begin{aligned} &\int_{-\infty}^\infty \sigma e^{-\frac{t^2}{2}}dt\int_{-\infty}^\infty \sigma e^{-\frac{s^2}{2}}ds\\ =&\sigma^2\int_{-\infty}^\infty \int_{-\infty}^\infty e^{-\frac{t^2 +s^2}{2}}dtds\\ \xlongequal{球变换}&\sigma^2\int_{0}^{2\pi}d\theta \int_0^\infty re^{-\frac{r^2}{2}}dr\\ \xlongequal{t=\frac{r^2}{2}}&2\pi\sigma^2 \int_0^{\infty }e^{-t}dt\\ =&2\pi \sigma^2. \end{aligned} = t=2r2 =σe2t2dtσe2s2dsσ2e2t2+s2dtdsσ202πdθ0re2r2dr2πσ20etdt2πσ2.
    所以原积分值为 2 π σ \sqrt {2\pi}\sigma 2π σ,正则化因子为其导数。

    标准化的正态分布是 N ( 0 , 1 ) N(0,1) N(0,1),一般记标准正态分布的分布函数 Φ ( x ) = P ( ξ ≤ x ) \Phi(x)=P(\xi\le x) Φ(x)=P(ξx),其相关函数值制成表,可以查到标准正态分布的分位数值。且有 Φ ( 0 ) = 1 / 2 , Φ ( − x ) = 1 − Φ ( x ) \Phi(0)=1/2,\Phi(-x)=1-\Phi(x) Φ(0)=1/2,Φ(x)=1Φ(x)

    正态分布十分重要,两个参数分别是二项分布的均值和方差,且形式需要牢记。正态分布可以描述生活中许多的统计现象,且可以导出一些统计常用的其他分布。

  3. 指数分布:
    p ( x ) = λ e − λ x I ( x ≥ 0 ) , λ > 0. p(x)=\lambda e^{-\lambda x}I_{(x\ge0)},\quad \lambda >0. p(x)=λeλxI(x0),λ>0.
    称为服从指数分布,记作 P ( λ ) P(\lambda) P(λ)。指数分布具有类似于几何分布的无记忆性,即 P ( ξ > s + t ∣ ξ > s ) = P ( ξ > t ) P(\xi>s+t|\xi >s)=P(\xi>t) P(ξ>s+tξ>s)=P(ξ>t),并且指数分布还是唯一具有无记忆性的连续分布,因此,指数分布常常用来描述生活中一些具有无记忆性的随机现象。

  4. Γ \Gamma Γ分布:
    p ( x ) = λ n Γ ( n ) x n − 1 e − λ x I ( x ≥ 0 ) p(x)=\frac{\lambda ^n}{\Gamma(n)}x^{n-1}e^{-\lambda x}I_{(x\ge0)} p(x)=Γ(n)λnxn1eλxI(x0)
    称为服从 Γ \Gamma Γ分布,记作 Γ ( n , λ ) \Gamma(n,\lambda ) Γ(n,λ),这里 Γ ( n ) \Gamma(n) Γ(n) Γ \Gamma Γ函数,即 Γ ( n ) = ∫ 0 ∞ x n − 1 e − x d x \Gamma(n)=\int_0^\infty x^{n-1}e^{-x}dx Γ(n)=0xn1exdx,给定 n n n后是一个定值。其核为 x n − 1 e − λ x x^{n-1}e^{-\lambda x} xn1eλx,前面的 λ n / Γ ( n ) \lambda ^n/\Gamma(n) λn/Γ(n)是正则化因子。可以证明
    ∫ 0 ∞ x n − 1 e − λ x d x = 1 λ n ∫ 0 ∞ ( λ x ) n − 1 e − λ x ⋅ λ d x = t = λ x 1 λ n ∫ 0 ∞ t n − 1 e − t d t = Γ ( n ) λ n . \begin{aligned} &\int_0^\infty x^{n-1}e^{-\lambda x}dx\\ =&\frac{1}{\lambda ^n}\int_0^\infty (\lambda x )^{n-1}e^{-\lambda x}\cdot\lambda dx\\ \xlongequal{t=\lambda x}&\frac{1}{\lambda ^n}\int_0^\infty t^{n-1}e^{-t}dt\\ =&\frac{\Gamma(n)}{\lambda ^n}. \end{aligned} =t=λx =0xn1eλxdxλn10(λx)n1eλxλdxλn10tn1etdtλnΓ(n).
    所以正则化因子为其倒数。

    Γ \Gamma Γ分布由其独特的核形式,关联了 x a e b x x^ae^{bx} xaebx的形式,因此用处很广泛,尤其在数理统计中。

  5. B \Beta B分布:
    p ( x ) = 1 B ( a , b ) x a − 1 ( 1 − x ) b − 1 I ( 0 ≤ x ≤ 1 ) , a , b > 0. p(x)=\frac{1}{\Beta(a,b)}x^{a-1}(1-x)^{b-1}I_{(0\le x\le 1)},\quad a,b>0. p(x)=B(a,b)1xa1(1x)b1I(0x1),a,b>0.
    称为服从 B \Beta B分布,记作 β ( a , b ) \beta(a,b) β(a,b),这里 B ( a , b ) \Beta(a,b) B(a,b) B \Beta B函数,即 B ( a , b ) = ∫ 0 1 x a − 1 ( 1 − x ) b − 1 d x \Beta(a,b)=\int_0^1 x^{a-1}(1-x)^{b-1}dx B(a,b)=01xa1(1x)b1dx,给定 a , b a,b a,b后是一个定值。其核为 x a − 1 ( 1 − x ) b − 1 x^{a-1}(1-x)^{b-1} xa1(1x)b1,由于其特殊形式,用处也很广泛,尤其在数理统计中,与 Γ \Gamma Γ分布、两点分布、二项分布都有关联。

    这里给出 B \Beta B函数与 Γ \Gamma Γ函数的关联:
    B ( a , b ) = Γ ( a ) Γ ( b ) Γ ( a + b ) . \Beta(a,b)=\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}. B(a,b)=Γ(a+b)Γ(a)Γ(b).

  6. Cauchy分布:
    p ( x ) = 1 π [ 1 + ( x − θ ) 2 ] , θ ∈ R . p(x)=\frac{1}{\pi[1+(x-\theta)^2]},\quad \theta\in \R. p(x)=π[1+(xθ)2]1,θR.
    称为服从参数为 θ \theta θ的Cauchy分布,它主要以特例的形式出现,并不常用。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值