Stolz定理及其在求极限上的应用

Stolz定理:

  • ( 0 0 \frac{0}{0} 00型的Stolz定理)设 a n {a_n} an b n {b_n} bn都是无穷小量,其中 a n {a_n} an还是严格单调减少数列,又存在(其中 l l l为有限或 ± ∞ \pm \infty ±)

lim ⁡ n → ∞ b n + 1 − b n a n + 1 − a n = l \lim _{n \rightarrow \infty} \frac{b_{n+1}-b_{n}}{a_{n+1}-a_{n}}=l nliman+1anbn+1bn=l

则有
lim ⁡ n → ∞ b n a n = l \lim _{n \rightarrow \infty} \frac{b_{n}}{a_{n}}=l nlimanbn=l

  • ( ∗ ∞ \frac{*}{\infty} 型的Stolz定理)设数列 a n {a_n} an是严格单调增大的无穷大量,又存在(其中 l l l为有限或 ± ∞ \pm \infty ±)

lim ⁡ n → ∞ b n + 1 − b n a n + 1 − a n = l \lim _{n \rightarrow \infty} \frac{b_{n+1}-b_{n}}{a_{n+1}-a_{n}}=l nliman+1anbn+1bn=l

则有
lim ⁡ n → ∞ b n a n = l \lim _{n \rightarrow \infty} \frac{b_{n}}{a_{n}}=l nlimanbn=l

例题:

  1. lim ⁡ n → ∞ ( x n − x n − 2 ) = 0 \lim \limits_{n \rightarrow \infty}\left(x_{n}-x_{n-2}\right)=0 nlim(xnxn2)=0,证明 lim ⁡ n → ∞ x n n = 0 \lim \limits_{n \rightarrow \infty} \frac{x_{n}}{n}=0 nlimnxn=0

  2. lim ⁡ n → ∞ ( x n − x n − 2 ) = 0 \lim \limits_{n \rightarrow \infty}\left(x_{n}-x_{n-2}\right)=0 nlim(xnxn2)=0,证明 lim ⁡ n → ∞ x n − x n − 1 n = 0 \lim \limits_{n \rightarrow \infty} \frac{x_{n}-x_{n-1}}{n}=0 nlimnxnxn1=0

解答

  1. n n n为偶数时原极限 = lim ⁡ n → + ∞ x n − x n − 2 + x n − 2 − x n − 4 + ⋯ + x 4 − x 2 n + x 2 n = 0 =\lim \limits_{n \rightarrow+\infty} \frac{x_{n}-x_{n-2}+x_{n-2}-x_{n-4}+\cdots+x_{4}-x_{2}}{n}+\frac{x_{2}}{n}=0 =n+limnxnxn2+xn2xn4++x4x2+nx2=0,当 n n n为奇数时同理可证(利用Stolz定理)

  2. 由上题结论可知 lim ⁡ n → + ∞ x n − x n − 1 n = lim ⁡ n → + ∞ x n n − lim ⁡ n → + ∞ x n − 1 n = 0 \lim \limits_{n \rightarrow+\infty} \frac{x_{n}-x_{n-1}}{n}=\lim \limits_{n \rightarrow+\infty} \frac{x_{n}}{n}-\lim \limits_{n \rightarrow+\infty} \frac{x_{n-1}}{n}=0 n+limnxnxn1=n+limnxnn+limnxn1=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值