stolz 定理

Stolze 定理

定理内容:

{ y n } \{y_n\} {yn} 是严格单调增加的正无穷大量,且

lim ⁡ n → ∞ x n − x n − 1 y n − y n − 1 = a \lim_{n\to\infty}\frac{x_n-x_{n-1}}{y_n-y_{n-1}}=a nlimynyn1xnxn1=a

lim ⁡ n → ∞ x n y n = a \lim_{n\to\infty}\frac{x_n}{y_n}=a nlimynxn=a

其中 a a a 可以为有限量, + ∞ , − ∞ +\infty,-\infty +,

证明过程:

先考虑 a = 0 a=0 a=0 的情况。由

lim ⁡ n ∞ x n − x n − 1 y n − y n − 1 = 0 \lim_{n\infty}\frac{x_n-x_{n-1}}{y_n-y_{n-1}}=0 nlimynyn1xnxn1=0

可知 ∀   ε > 0 , ∃   N 1 , s . t .   ∀   n > N 1 \forall\,\varepsilon>0,\exist\,N_1,s.t.\,\forall\,n>N_1 ε>0,N1,s.t.n>N1:

∣ x n − x n − 1 ∣ < ε   ( y n − y n − 1 ) |x_n-x_{n-1}|<\varepsilon\,(y_n-y_{n-1}) xnxn1<ε(ynyn1)

由于 { y n } \{y_n\} {yn} 是正无穷大量,显然可要求 y N 1 > 0 y_{_{N_1}}>0 yN1>0,于是

∣ x n − x N 1 ∣ ⩽ ∣ x n − x n − 1 ∣ + ∣ x n − 1 − x n − 2 ∣ + ⋯ + ∣ x N 1 + 1 − x N 1 ∣ = ε ( y n − y n − 1 ) + ε ( y n − 1 − y n − 2 ) + ⋯ + ε ( y N 1 + 1 − y N 1 ) < ε ( y n − y N 1 ) \begin{aligned} |x_n-x_{_{N_1}}|& \leqslant|x_n-x_{n-1}|+|x_{n-1}-x_{n-2}|+\cdots+|x_{_{N_1+1}}-x_{_{N_1}}|\\ &=\varepsilon(y_n-y_{n-1})+\varepsilon(y_{n-1}-y_{n-2})+\cdots+\varepsilon(y_{_{N_1+1}}-y_{_{N_1}})\\ &<\varepsilon(y_n-y_{_{N_1}}) \end{aligned} xnxN1xnxn1+xn1xn2++xN1+1xN1=ε(ynyn1)+ε(yn1yn2)++ε(yN1+1yN1)<ε(ynyN1)

不等式两边同除 y n y_n yn,得到:

∣ x n y n − x N 1 y n ∣ ⩽ ε ( 1 − y N 1 y n ) < ε \left|\frac{x_n}{y_n}-\frac{x_{_{N_1}}}{y_n}\right|\leqslant\varepsilon\left(1-\frac{y_{_{N_1}}}{y_n}\right)<\varepsilon ynxnynxN1ε(1ynyN1)<ε

对于固定的 N 1 N_1 N1,又可以取到 N > N 1 N>N_1 N>N1,使得 ∀   n > N : \forall\, n>N: n>N:

∣ x N 1 y n ∣ < ε , \left|\frac{x_{_{N_1}}}{y_n}\right|<\varepsilon, ynxN1<ε,

从而:

∣ x n y n ∣ < ε + ∣ x N 1 y n ∣ < 2 ε . \left|\frac{x_n}{y_n}\right|<\varepsilon+\left|\frac{x_{_{N_1}}}{y_n}\right|<2\varepsilon. ynxn<ε+ynxN1<2ε.

a a a 为非零有限数时,令 x n ′ = x n − a y n x_n'=x_n-ay_n xn=xnayn, 于是由

lim ⁡ n → ∞ x n ′ − x n − 1 ′ y n − y n − 1 = lim ⁡ n → ∞ x n − x n − 1 y n − y n − 1 − a = 0 \lim_{n\to\infty}\frac{x_n'-x'_{n-1}}{y_n-y_{n-1}}=\lim_{n\to\infty}\frac{x_n-x_{n-1}}{y_{n}-y_{n-1}}-a=0 nlimynyn1xnxn1=nlimynyn1xnxn1a=0

得到

lim ⁡ n → ∞ x n ′ y n = 0 \lim_{n\to\infty}\frac{x_n'}{y_n}=0 nlimynxn=0

从而

lim ⁡ n → ∞ x n y n = lim ⁡ n → ∞ x n ′ y n + a = a \lim_{n\to\infty}\frac{x_n}{y_n}=\lim_{n\to\infty}\frac{x_n'}{y_n}+a=a nlimynxn=nlimynxn+a=a

对于 a = + ∞ a=+\infty a=+ 的情况,首先 ∃   N , ∀   n > N \exist\,N,\forall\,n>N N,n>N s.t.

x n − x n − 1 > y n − y n − 1 (1) x_n-x_{n-1}>y_n-y_{n-1}\tag{1} xnxn1>ynyn1(1)

这说明 { x n } \{x_n\} {xn} 也严格单调增加,且从 ( 1 ) (1) (1) 可知 { x n } \{x_n\} {xn} 时正无穷大量,将前面的结论应用到 { y n x n } \left\{\frac{y_n}{x_n}\right\} {xnyn} ,得到

lim ⁡ n → ∞ y n x n = lim ⁡ n → ∞ y n − y n − 1 x n − x n − 1 = 0 \lim_{n\to\infty}\frac{y_n}{x_n}=\lim_{n\to\infty}\frac{y_n-y_{n-1}}{x_n-x_{n-1}}=0 nlimxnyn=nlimxnxn1ynyn1=0

因而

lim ⁡ n → ∞ x n y n = + ∞ \lim_{n\to\infty}\frac{x_n}{y_n}=+\infty nlimynxn=+

对于 a = − ∞ a=-\infty a= 的情况,证明方法类同

例题

题目:

lim ⁡ n → ∞ a n = a , \lim_{n\to\infty}a_n=a, nliman=a,

求极限
lim ⁡ n → ∞ a 1 + 2 a 2 + ⋯ + n a n n 2 \lim_{n\to\infty}\frac{a_1+2a_2+\cdots+na_n}{n^2} nlimn2a1+2a2++nan

参考答案:
lim ⁡ n → ∞ a 1 + 2 a 2 + ⋯ + n a n n 2 = lim ⁡ n → ∞ n a n n 2 − ( n − 1 ) 2 = lim ⁡ n → ∞ n a n 2 n − 1 = a 2 \begin{aligned} \lim_{n\to\infty}\frac{a_1+2a_2+\cdots+na_n}{n^2} &=\lim_{n\to\infty}\frac{na_n}{n^2-(n-1)^2}\\ &=\lim_{n\to\infty}\frac{na_n}{2n-1}=\frac{a}{2} \end{aligned} nlimn2a1+2a2++nan=nlimn2(n1)2nan=nlim2n1nan=2a


注意:Stolz 公式不能逆用

反例: 显然有
lim ⁡ n → ∞ ( − 1 ) n n = 0 \lim_{n\to\infty}\frac{(-1)^n}{n}=0 nlimn(1)n=0

lim ⁡ n → ∞ ( − 1 ) n − ( − 1 ) n − 1 n − ( n − 1 ) = lim ⁡ n → ∞ ( − 1 ) n − ( − 1 ) n − 1 = lim ⁡ n → ∞ 2 ( − 1 ) n \begin{aligned} \lim_{n\to\infty}\frac{(-1)^n-(-1)^{n-1}}{n-(n-1)}&=\lim_{n\to\infty}(-1)^n-(-1)^{n-1}\\ &=\lim_{n\to\infty}2(-1)^n \end{aligned} nlimn(n1)(1)n(1)n1=nlim(1)n(1)n1=nlim2(1)n
极限不存在


参考资料:

《数学分析 第三版 上》.陈纪修.於崇华.金路 P42-P43

微信公众号 “赊刀人的数学小家” 文章《Stolz定理不可逆用与—些经典的极限计算题
》2021.1.4 发布


2021年2月2日23:56:20

  • 7
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值