函数求导
导数与微分
微分:对函数 y = f ( x ) y=f(x) y=f(x)定义域中的一点 x 0 x_0 x0,若存在一个只与 x 0 x_0 x0有关,而与 Δ x \Delta x Δx无关的数 g ( x 0 ) g(x_0) g(x0),使得当 Δ x → 0 \Delta x\to 0 Δx→0时恒成立关系式 Δ y = g ( x 0 ) Δ x + o ( Δ x ) \Delta y=g(x_0)\Delta x+o(\Delta x) Δy=g(x0)Δx+o(Δx),则称 f ( x ) f(x) f(x)在 x 0 x_0 x0处可微,微分为 d y = g ( x 0 ) d x {\rm d}y=g(x_0){\rm d}x dy=g(x0)dx,即当 Δ → 0 \Delta \to 0 Δ→0时 Δ y \Delta y Δy的线性主部。
导数:对函数
y
=
f
(
x
)
y=f(x)
y=f(x)定义域中的一点
x
0
x_0
x0,如果存在极限
lim
Δ
x
→
0
Δ
y
Δ
x
=
lim
Δ
x
→
0
f
(
x
0
+
Δ
x
)
−
f
(
x
0
)
Δ
x
=
d
e
f
f
′
(
x
0
)
,
\lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\to 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}\stackrel {\rm def}=f'(x_0),
Δx→0limΔxΔy=Δx→0limΔxf(x0+Δx)−f(x0)=deff′(x0),
则称
f
(
x
)
f(x)
f(x)在
x
0
x_0
x0处可导,导数为
f
′
(
x
0
)
f'(x_0)
f′(x0)。
命题:一元函数 f ( x ) f(x) f(x)在 x 0 x_0 x0处的可导与可微等价。
证明:
如果可微,即存在关系式
Δ
y
=
g
(
x
0
)
Δ
x
+
o
(
Δ
x
)
\Delta y=g(x_0)\Delta x+o(\Delta x)
Δy=g(x0)Δx+o(Δx),则
lim
Δ
x
→
0
Δ
y
Δ
x
=
lim
Δ
x
→
0
g
(
x
0
)
Δ
x
+
o
(
Δ
x
)
Δ
x
=
g
(
x
0
)
=
d
e
f
f
′
(
x
0
)
.
\lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\to 0}\frac{g(x_0)\Delta x+o(\Delta x)}{\Delta x}=g(x_0)\stackrel {\rm def}=f'(x_0).
Δx→0limΔxΔy=Δx→0limΔxg(x0)Δx+o(Δx)=g(x0)=deff′(x0).
即证明了可导。
如果可导,即存在一个
f
′
(
x
0
)
f'(x_0)
f′(x0)使得
lim
Δ
x
→
0
Δ
y
Δ
x
=
f
′
(
x
0
)
\lim\limits _{\Delta x\to 0}\dfrac{\Delta y}{\Delta x}=f'(x_0)
Δx→0limΔxΔy=f′(x0),则
lim
Δ
x
→
0
[
Δ
y
Δ
x
−
f
′
(
x
0
)
]
=
lim
Δ
x
→
0
Δ
y
−
f
′
(
x
0
)
Δ
x
Δ
x
=
0
,
\lim_{\Delta x\to 0}[\frac{\Delta y}{\Delta x}-f'(x_0)]=\lim_{\Delta x\to 0}\frac{\Delta y-f'(x_0)\Delta x}{\Delta x}=0,
Δx→0lim[ΔxΔy−f′(x0)]=Δx→0limΔxΔy−f′(x0)Δx=0,
即
Δ
y
−
f
′
(
x
0
)
Δ
x
=
o
(
Δ
x
)
,
Δ
y
=
f
′
(
x
0
)
Δ
x
+
o
(
Δ
x
)
.
\Delta y-f'(x_0)\Delta x=o(\Delta x),\quad \Delta y=f'(x_0)\Delta x+o(\Delta x).
Δy−f′(x0)Δx=o(Δx),Δy=f′(x0)Δx+o(Δx).
即证明了可微。
用定义对一些初等函数求导
常数函数的导数恒等于 0 0 0,以下出现 Δ x \Delta x Δx的式子均省略 Δ x → 0 \Delta x\to0 Δx→0。
一、求
y
=
sin
x
y=\sin x
y=sinx的导函数
sin
(
x
+
Δ
x
)
−
sin
x
Δ
x
=
2
cos
2
x
+
Δ
x
2
sin
Δ
x
2
Δ
x
=
cos
2
x
+
Δ
x
2
=
cos
x
.
⇓
(
sin
x
)
′
=
cos
x
.
\begin{aligned} \frac{\sin (x+\Delta x)-\sin x}{\Delta x}=&\frac{2\cos \frac{2x+\Delta x}{2}\sin \frac{\Delta x}{2}}{\Delta x}\\ =&\cos \frac{2x+\Delta x}{2}\\ =&\cos x.\\ \Downarrow \\ (\sin x)'=&\cos x. \end{aligned}
Δxsin(x+Δx)−sinx===⇓(sinx)′=Δx2cos22x+Δxsin2Δxcos22x+Δxcosx.cosx.
二、求
y
=
cos
x
y=\cos x
y=cosx的导函数
cos
(
x
+
Δ
x
)
−
cos
x
Δ
x
=
−
2
sin
2
x
+
Δ
x
2
sin
Δ
x
2
Δ
x
=
−
sin
2
x
+
Δ
x
2
=
−
sin
x
.
⇓
(
cos
x
)
′
=
−
sin
x
.
\begin{aligned} \frac{\cos (x+\Delta x)-\cos x}{\Delta x}=&\frac{-2\sin \frac{2x+\Delta x}{2}\sin \frac{\Delta x}{2}}{\Delta x}\\ =&-\sin \frac{2x+\Delta x}{2}\\ =&-\sin x.\\ \Downarrow\\ (\cos x)'=&-\sin x. \end{aligned}
Δxcos(x+Δx)−cosx===⇓(cosx)′=Δx−2sin22x+Δxsin2Δx−sin22x+Δx−sinx.−sinx.
三(1)、求
y
=
ln
x
y=\ln x
y=lnx的导函数
ln
(
x
+
Δ
x
)
−
ln
x
Δ
x
=
ln
x
+
Δ
x
x
Δ
x
=
ln
(
1
+
Δ
x
x
)
x
⋅
Δ
x
x
=
1
x
.
⇓
(
ln
x
)
′
=
1
x
.
\begin{aligned} \frac{\ln (x+\Delta x)-\ln x}{\Delta x}=&\frac{\ln\frac{x+\Delta x}{x}}{\Delta x}\\ =&\frac{\ln (1+\frac{\Delta x}{x})}{x\cdot \frac{\Delta x}{x}}\\ =&\frac 1x.\\ \Downarrow \\ (\ln x)'=&\frac 1x. \end{aligned}
Δxln(x+Δx)−lnx===⇓(lnx)′=Δxlnxx+Δxx⋅xΔxln(1+xΔx)x1.x1.
三(2)、求
y
=
log
a
x
y=\log_a x
y=logax的导函数
log
a
(
x
+
Δ
x
)
−
log
a
x
Δ
x
=
1
ln
a
⋅
ln
(
x
+
Δ
x
)
−
ln
x
Δ
x
=
1
x
ln
a
.
⇓
(
log
a
x
)
′
=
1
x
ln
a
.
\begin{aligned} \frac{\log_a(x+\Delta x)-\log_a x}{\Delta x}=&\frac 1{\ln a}\cdot \frac{\ln (x+\Delta x)-\ln x}{\Delta x}\\ =&\frac {1}{x\ln a}.\\ \Downarrow \\ (\log_a x)'=&\frac 1{x\ln a}. \end{aligned}
Δxloga(x+Δx)−logax==⇓(logax)′=lna1⋅Δxln(x+Δx)−lnxxlna1.xlna1.
四(1)、求
y
=
e
x
y=e^x
y=ex的导函数
e
x
+
Δ
x
−
e
x
Δ
x
=
e
x
⋅
e
Δ
x
−
1
Δ
x
=
e
x
.
⇓
(
e
x
)
′
=
e
x
.
\begin{aligned} \frac{e^{x+\Delta x}-e^x}{\Delta x}=&e^x\cdot\frac{e^{\Delta x}-1}{\Delta x}=e^x.\\ \Downarrow \\ (e^x)'=&e^x. \end{aligned}
Δxex+Δx−ex=⇓(ex)′=ex⋅ΔxeΔx−1=ex.ex.
四(2)、求
y
=
a
x
y=a^{x}
y=ax的导函数
a
x
+
Δ
x
−
a
x
Δ
x
=
a
x
⋅
a
Δ
x
−
1
Δ
x
=
a
x
ln
a
.
⇓
(
a
x
)
′
=
a
x
ln
a
.
\begin{aligned} \frac{a^{x+\Delta x}-a^x}{\Delta x}=&a^x\cdot \frac{a^{\Delta x}-1}{\Delta x}\\ =&a^x\ln a.\\ \Downarrow \\ (a^x)'=&a^x\ln a. \end{aligned}
Δxax+Δx−ax==⇓(ax)′=ax⋅ΔxaΔx−1axlna.axlna.
五、求
y
=
x
a
y=x^a
y=xa的导函数
(
x
+
Δ
x
)
a
−
x
a
Δ
x
=
x
a
[
(
1
+
Δ
x
x
)
a
−
1
]
x
⋅
Δ
x
x
=
a
x
a
−
1
.
⇓
(
x
a
)
′
=
a
x
a
−
1
.
\begin{aligned} \frac{(x+\Delta x)^a-x^a}{\Delta x}=&\frac{x^a[(1+\frac{\Delta x}{x})^a-1]}{x\cdot\frac{\Delta x}{x}}\\ =&ax^{a-1}.\\ \Downarrow \\ (x^a)'=&ax^{a-1}. \end{aligned}
Δx(x+Δx)a−xa==⇓(xa)′=x⋅xΔxxa[(1+xΔx)a−1]axa−1.axa−1.
求导(微)的四则运算法则
法则1(线性求导): [ c 1 f ( x ) + c 2 g ( x ) ] ′ = c 1 f ′ ( x ) + c 2 g ′ ( x ) [c_1f(x)+c_2g(x)]'=c_1f'(x)+c_2g'(x) [c1f(x)+c2g(x)]′=c1f′(x)+c2g′(x), d [ c 1 f + c 2 g ] = c 1 d f + c 2 d g {\rm d}[c_1f+c_2g]=c_1{\rm d}f+c_2{\rm d}g d[c1f+c2g]=c1df+c2dg。
证明:
[
c
1
f
(
x
)
+
c
2
g
(
x
)
]
′
=
[
c
1
f
(
x
+
Δ
x
)
+
c
2
g
(
x
+
Δ
x
)
]
−
[
c
1
f
(
x
)
+
c
2
g
(
x
)
]
Δ
x
=
c
1
[
f
(
x
+
Δ
x
)
−
f
(
x
)
]
Δ
x
+
c
2
[
g
(
x
+
Δ
x
)
−
g
(
x
)
]
Δ
x
=
c
1
f
′
(
x
)
+
c
2
g
′
(
x
)
.
\begin{aligned} [c_1f(x)+c_2g(x)]'=&\frac{[c_1f(x+\Delta x)+c_2g(x+\Delta x)]-[c_1f(x)+c_2g(x)]}{\Delta x}\\ =&\frac{c_1[f(x+\Delta x)-f(x)]}{\Delta x}+\frac{c_2[g(x+\Delta x)-g(x)]}{\Delta x}\\ =&c_1f'(x)+c_2g'(x). \end{aligned}
[c1f(x)+c2g(x)]′===Δx[c1f(x+Δx)+c2g(x+Δx)]−[c1f(x)+c2g(x)]Δxc1[f(x+Δx)−f(x)]+Δxc2[g(x+Δx)−g(x)]c1f′(x)+c2g′(x).
法则2(乘法求导):
[
f
(
x
)
⋅
g
(
x
)
]
′
=
f
′
(
x
)
g
(
x
)
+
f
(
x
)
g
′
(
x
)
[f(x)\cdot g(x)]'=f'(x)g(x)+f(x)g'(x)
[f(x)⋅g(x)]′=f′(x)g(x)+f(x)g′(x),
d
[
f
g
]
=
(
d
f
)
g
+
f
(
d
g
)
{\rm d}[fg]=({\rm d}f)g+f({\rm d}g)
d[fg]=(df)g+f(dg)。
证明:
[
f
(
x
)
g
(
x
)
]
′
=
f
(
x
+
Δ
x
)
g
(
x
+
Δ
x
)
−
f
(
x
)
g
(
x
)
Δ
x
=
f
(
x
+
Δ
x
)
g
(
x
+
Δ
x
)
−
f
(
x
+
Δ
x
)
g
(
x
)
Δ
x
+
f
(
x
+
Δ
x
)
g
(
x
)
−
f
(
x
)
g
(
x
)
Δ
x
=
f
(
x
+
Δ
x
)
g
′
(
x
)
+
g
(
x
)
f
′
(
x
)
=
f
′
(
x
)
g
(
x
)
+
f
(
x
)
g
′
(
x
)
.
\begin{aligned} [f(x)g(x)]'=&\frac{f(x+\Delta x)g(x+\Delta x)-f(x)g(x)}{\Delta x}\\ =&\frac{f(x+\Delta x)g(x+\Delta x)-f(x+\Delta x)g(x)}{\Delta x}+\frac{f(x+\Delta x)g(x)-f(x)g(x)}{\Delta x}\\ =&f(x+\Delta x)g'(x)+g(x)f'(x)\\ =&f'(x)g(x)+f(x)g'(x). \end{aligned}
[f(x)g(x)]′====Δxf(x+Δx)g(x+Δx)−f(x)g(x)Δxf(x+Δx)g(x+Δx)−f(x+Δx)g(x)+Δxf(x+Δx)g(x)−f(x)g(x)f(x+Δx)g′(x)+g(x)f′(x)f′(x)g(x)+f(x)g′(x).
法则3(倒数求导):
[
1
g
(
x
)
]
′
=
−
g
′
(
x
)
[
g
(
x
)
]
2
[\dfrac 1{g(x)}]'=-\dfrac{g'(x)}{[g(x)]^2}
[g(x)1]′=−[g(x)]2g′(x),
d
(
1
g
)
=
−
d
g
g
2
{\rm d}(\dfrac{1}{g})=-\dfrac{{\rm d}g}{g^2}
d(g1)=−g2dg。
证明:
[
1
g
(
x
)
]
′
=
1
g
(
x
+
Δ
x
)
−
1
g
(
x
)
Δ
x
=
1
g
(
x
+
Δ
x
)
g
(
x
)
⋅
g
(
x
)
−
g
(
x
+
Δ
x
)
Δ
x
=
−
g
′
(
x
)
[
g
(
x
)
]
2
.
\begin{aligned} \left[\frac 1{g(x)}\right]'=&\frac{\frac 1{g(x+\Delta x)}-\frac 1{g(x)}}{\Delta x}\\ =&\frac{1}{g(x+\Delta x)g(x)}\cdot\frac{g(x)-g(x+\Delta x)}{\Delta x}\\ =&\frac{-g'(x)}{[g(x)]^2}. \end{aligned}
[g(x)1]′===Δxg(x+Δx)1−g(x)1g(x+Δx)g(x)1⋅Δxg(x)−g(x+Δx)[g(x)]2−g′(x).
法则4(除法求导):
[
f
(
x
)
g
(
x
)
]
′
=
f
′
(
x
)
g
(
x
)
−
f
(
x
)
g
(
x
)
[
g
(
x
)
]
2
[\dfrac {f(x)}{g(x)}]'=\dfrac{f'(x)g(x)-f(x)g(x)}{[g(x)]^2}
[g(x)f(x)]′=[g(x)]2f′(x)g(x)−f(x)g(x),
d
[
f
g
]
=
(
d
f
)
g
−
f
(
d
g
)
g
2
{\rm d}[\dfrac fg]=\dfrac{({\rm d}f)g-f({\rm d}g)}{g^2}
d[gf]=g2(df)g−f(dg)。
证明:法则2+法则3=法则4。
法则5(多项乘法求导):可用数学归纳法证明。
[
∏
i
=
1
n
f
i
(
x
)
]
′
=
∑
i
=
1
n
[
f
i
′
(
x
)
∏
j
=
1
;
j
≠
i
n
f
j
(
x
)
]
.
\left[\prod_{i=1}^n f_i(x)\right]'=\sum_{i=1}^n \left[f_i'(x)\prod_{j=1;j\ne i}^nf_j(x)\right].
[i=1∏nfi(x)]′=i=1∑n⎣⎡fi′(x)j=1;j=i∏nfj(x)⎦⎤.
反函数求导
命题:若函数 y = f ( x ) y=f(x) y=f(x)在 ( a , b ) (a,b) (a,b)上连续、严格单调、可导且 f ′ ( x ) ≠ 0 f'(x)\ne 0 f′(x)=0,记 α = min ( f ( a + ) , f ( b − ) ) , β = max ( f ( a + ) , f ( b − ) ) \alpha=\min (f(a^+),f(b^-)),\beta=\max (f(a^+),f(b^-)) α=min(f(a+),f(b−)),β=max(f(a+),f(b−)),则反函数 x = f − 1 ( y ) x=f^{-1}(y) x=f−1(y)在 ( α , β ) (\alpha,\beta) (α,β)上可导,且 [ f − 1 ( y ) ] ′ = 1 f ′ ( x ) [f^{-1}(y)]'=\dfrac1{f'(x)} [f−1(y)]′=f′(x)1。
证明:
由反函数存在定理,
x
=
f
−
1
(
y
)
x=f^{-1}(y)
x=f−1(y)存在,且
Δ
y
=
f
(
x
+
Δ
x
)
−
f
(
x
)
≠
0
\Delta y=f(x+\Delta x)-f(x)\ne 0
Δy=f(x+Δx)−f(x)=0,等价于
Δ
x
=
f
−
1
(
y
+
Δ
y
)
−
f
−
1
(
y
)
≠
0.
\Delta x=f^{-1}(y+\Delta y)-f^{-1}(y)\ne 0.
Δx=f−1(y+Δy)−f−1(y)=0.
且当
Δ
x
→
0
\Delta x\to 0
Δx→0时有
Δ
y
→
0
\Delta y\to 0
Δy→0(以上可以通过图像看出)。
[
f
−
1
(
y
)
]
′
=
lim
Δ
y
→
0
f
−
1
(
y
+
Δ
y
)
−
f
−
1
(
y
)
Δ
y
=
lim
Δ
x
→
0
Δ
x
f
(
x
+
Δ
x
)
−
f
(
x
)
=
1
f
′
(
x
)
.
\begin{aligned} [f^{-1}(y)]'=&\lim_{\Delta y\to 0}\frac{f^{-1}(y+\Delta y)-f^{-1}(y)}{\Delta y}\\ =&\lim_{\Delta x\to 0}\frac{\Delta x}{f(x+\Delta x)-f(x)}\\ =&\frac{1}{f'(x)}. \end{aligned}
[f−1(y)]′===Δy→0limΔyf−1(y+Δy)−f−1(y)Δx→0limf(x+Δx)−f(x)Δxf′(x)1.
这一点可以记作
d
x
d
y
=
[
d
y
d
x
]
−
1
.
\frac{{\rm d} x}{{\rm d} y}=\left[\frac{{\rm d} y}{{\rm d} x}\right]^{-1}.
dydx=[dxdy]−1.
用反函数求导求反三角函数的导数
一、求 y = arcsin x , x ∈ [ − 1 , 1 ] y=\arcsin x,x\in [-1,1] y=arcsinx,x∈[−1,1]的导函数
这里
x
=
sin
y
,
y
=
[
−
π
2
,
π
2
]
x=\sin y,y=[-\frac \pi2,\frac \pi2]
x=siny,y=[−2π,2π]是其导函数,所以
d
y
d
x
=
[
d
x
d
y
]
−
1
=
1
cos
y
=
1
cos
arcsin
x
=
1
1
−
x
2
.
\begin{aligned} &\frac{{\rm d}y}{{\rm d}x}=\left[\frac{{\rm d}x}{{\rm d}y}\right]^{-1}\\ =&\frac{1}{\cos y}\\ =&\frac{1}{\cos \arcsin x}\\ =&\frac{1}{\sqrt{1-x^2}}. \end{aligned}
===dxdy=[dydx]−1cosy1cosarcsinx11−x21.
二、求
y
=
arccos
x
,
x
∈
[
−
1
,
1
]
y=\arccos x,x\in [-1,1]
y=arccosx,x∈[−1,1]的导函数
这里
x
=
cos
y
,
y
∈
[
0
,
π
]
x=\cos y,y\in [0,\pi]
x=cosy,y∈[0,π]是其反函数,所以
d
y
d
x
=
[
d
x
d
y
]
−
1
=
−
1
sin
y
=
−
1
1
−
cos
2
y
=
−
1
1
−
x
2
.
\begin{aligned} &\frac{{\rm d}y}{{\rm d}x}=\left[\frac{{\rm d}x}{{\rm d}y}\right]^{-1}\\ =&-\frac{1}{\sin y}\\ =&-\frac{1}{\sqrt{1-\cos^2 y}}\\ =&-\frac{1}{\sqrt{1-x^2}}. \end{aligned}
===dxdy=[dydx]−1−siny1−1−cos2y1−1−x21.
三、求
y
=
arctan
x
,
x
∈
R
y=\arctan x,x\in \R
y=arctanx,x∈R的导函数
这里
x
=
tan
y
,
y
∈
[
−
π
2
,
π
2
]
x=\tan y,y\in [-\frac \pi 2,\frac \pi2]
x=tany,y∈[−2π,2π]是其反函数,所以
d
y
d
x
=
[
d
x
d
y
]
−
1
=
1
sec
2
y
=
1
1
+
tan
2
y
=
1
1
+
x
2
.
\begin{aligned} &\frac{{\rm d}y}{{\rm d}x}=\left[\frac{{\rm d}x}{{\rm d}y}\right]^{-1}\\ =&\frac{1}{\sec^2 y}\\ =&\frac{1}{1+\tan^2y}\\ =&\frac{1}{1+x^2}. \end{aligned}
===dxdy=[dydx]−1sec2y11+tan2y11+x21.
复合函数求导的链式法则
命题:设 u = g ( x ) u=g(x) u=g(x)在 x = x 0 x=x_0 x=x0处可导且 y = f ( u ) y=f(u) y=f(u)在 u = u 0 = g ( x 0 ) u=u_0=g(x_0) u=u0=g(x0)处可导,则复合函数 y = f ( g ( x ) ) y=f(g(x)) y=f(g(x))在 x = x 0 x=x_0 x=x0处可导,且有 [ f ( g ( x ) ) ] ′ = f ′ ( u 0 ) g ′ ( x 0 ) = f ′ ( g ( x 0 ) ) g ′ ( x 0 ) [f(g(x))]'=f'(u_0)g'(x_0)=f'(g(x_0))g'(x_0) [f(g(x))]′=f′(u0)g′(x0)=f′(g(x0))g′(x0)。
证明:
由于
y
=
f
(
u
)
y=f(u)
y=f(u)在
u
0
u_0
u0处可导,所以可微,故存在一个无穷小量
α
\alpha
α满足
lim
Δ
u
→
0
α
=
0
\lim\limits_{\Delta u\to 0}\alpha=0
Δu→0limα=0,且
f
(
u
0
+
Δ
u
)
−
f
(
u
0
)
=
f
′
(
u
0
)
Δ
u
+
α
Δ
u
.
f(u_0+\Delta u)-f(u_0)=f'(u_0)\Delta u+\alpha\Delta u.
f(u0+Δu)−f(u0)=f′(u0)Δu+αΔu.
如果让
Δ
u
=
0
\Delta u=0
Δu=0时
α
=
0
\alpha=0
α=0,则上式对
Δ
u
=
0
\Delta u=0
Δu=0依然成立。设
Δ
u
=
g
(
x
0
+
Δ
x
)
−
g
(
x
0
)
\Delta u=g(x_0+\Delta x)-g(x_0)
Δu=g(x0+Δx)−g(x0),这样就有
f
(
u
0
+
Δ
u
)
−
f
(
u
0
)
Δ
x
=
f
(
g
(
x
0
+
Δ
x
)
)
−
f
(
g
(
x
0
)
)
Δ
x
=
f
′
(
u
0
)
Δ
u
Δ
x
+
α
Δ
u
Δ
x
.
\frac{f(u_0+\Delta u)-f(u_0)}{\Delta x}=\frac{f(g(x_0+\Delta x))-f(g(x_0))}{\Delta x}=f'(u_0)\frac{\Delta u}{\Delta x}+\alpha\frac{\Delta u}{\Delta x}.
Δxf(u0+Δu)−f(u0)=Δxf(g(x0+Δx))−f(g(x0))=f′(u0)ΔxΔu+αΔxΔu.
令
Δ
x
→
0
\Delta x\to 0
Δx→0,则由
Δ
u
=
g
(
u
0
)
Δ
x
+
o
(
Δ
x
)
\Delta u=g(u_0)\Delta x+o(\Delta x)
Δu=g(u0)Δx+o(Δx)得
Δ
u
→
0
\Delta u\to 0
Δu→0,于是
lim
Δ
x
→
0
f
(
g
(
x
0
+
Δ
x
)
)
−
f
(
g
(
x
0
)
)
Δ
x
=
lim
Δ
x
→
0
f
′
(
u
0
)
g
′
(
x
0
)
+
g
′
(
x
0
)
lim
Δ
u
→
0
α
=
f
′
(
u
0
)
g
′
(
x
0
)
.
\lim_{\Delta x\to 0}\frac{f(g(x_0+\Delta x))-f(g(x_0))}{\Delta x}=\lim_{\Delta x\to 0}f'(u_0)g'(x_0)+g'(x_0)\lim_{\Delta u\to 0}\alpha=f'(u_0)g'(x_0).
Δx→0limΔxf(g(x0+Δx))−f(g(x0))=Δx→0limf′(u0)g′(x0)+g′(x0)Δu→0limα=f′(u0)g′(x0).
也可以写成链式法则:
d
y
d
x
=
d
y
d
u
⋅
d
u
d
x
.
\frac{{\rm d}y}{{\rm d}x}=\frac{{\rm d}y}{{\rm d}u}\cdot \frac{{\rm d}u}{{\rm d}x}.
dxdy=dudy⋅dxdu.
微分形式为
d
[
f
(
g
(
x
)
)
]
=
f
′
(
g
(
x
)
)
g
′
(
x
)
d
x
.
{\rm d}[f(g(x))]=f'(g(x))g'(x){\rm d}x.
d[f(g(x))]=f′(g(x))g′(x)dx.
由此可以推出一阶微分的形式不变性,即
u
=
g
(
x
)
,
y
=
f
(
u
)
u=g(x),y=f(u)
u=g(x),y=f(u),有
d
[
f
(
u
)
]
=
f
′
(
u
)
d
u
.
{\rm d}[f(u)]=f'(u){\rm d}u.
d[f(u)]=f′(u)du.
虽然这里
u
u
u不是自变量,但依然可以把
u
u
u当成自变量来计算
f
(
u
)
f(u)
f(u)的微分。
对数求导法
对数求导法适用于形如 y = f ( x ) = u ( x ) v ( x ) y=f(x)=u(x)^{v(x)} y=f(x)=u(x)v(x)的函数求导,这种函数也叫幂指函数。
首先令
z
(
x
)
=
ln
y
=
v
(
x
)
ln
u
(
x
)
z(x)=\ln y=v(x)\ln u(x)
z(x)=lny=v(x)lnu(x),则
z
′
(
x
)
=
v
′
(
x
)
ln
u
(
x
)
+
v
(
x
)
u
′
(
x
)
u
(
x
)
,
z
′
(
x
)
=
y
′
(
x
)
y
(
x
)
,
z'(x)=v'(x)\ln u(x)+\frac{v(x)u'(x)}{u(x)},\\ z'(x)=\frac{y'(x)}{y(x)},
z′(x)=v′(x)lnu(x)+u(x)v(x)u′(x),z′(x)=y(x)y′(x),
综合两式得到
y
′
(
x
)
=
[
v
′
(
x
)
ln
u
(
x
)
+
v
(
x
)
u
′
(
x
)
u
(
x
)
]
⋅
u
(
x
)
v
(
x
)
.
y'(x)=\left[v'(x)\ln u(x)+\frac{v(x)u'(x)}{u(x)} \right]\cdot u(x)^{v(x)}.
y′(x)=[v′(x)lnu(x)+u(x)v(x)u′(x)]⋅u(x)v(x).
这是一种将复杂函数转化为简单初等函数求导的方法,重点是找到一个转换关系充当
y
y
y与
u
,
v
u,v
u,v之间的桥梁。
隐函数求导
隐函数求导依赖于复合函数的求导法则、乘法求导法则与一阶微分的形式不变性。在求导时直接对隐函数的两边同时求微分或者求导即可。如
e
x
y
+
x
2
y
=
1
,
e^{xy}+x^2y=1,
exy+x2y=1,
两边同时求导,有
(
y
+
x
y
′
)
e
x
y
+
2
x
y
+
x
2
y
′
=
0
(y+xy')e^{xy}+2xy+x^2y'=0
(y+xy′)exy+2xy+x2y′=0
解出
y
′
=
−
y
e
x
y
+
2
x
y
x
e
x
y
+
x
2
=
−
y
(
e
x
y
+
2
x
)
x
(
e
x
y
+
x
)
.
y'=-\frac{ye^{xy}+2xy}{xe^{xy}+x^2}=-\frac{y(e^{xy}+2x)}{x(e^{xy}+x)}.
y′=−xexy+x2yexy+2xy=−x(exy+x)y(exy+2x).
对于变量分离的隐函数
g
(
y
)
=
f
(
x
)
g(y)=f(x)
g(y)=f(x),两边同时求微分,得到
g
′
(
y
)
d
y
=
f
′
(
x
)
d
x
,
d
y
d
x
=
f
′
(
x
)
g
′
(
y
)
.
g'(y){\rm d}y=f'(x){\rm d}x,\quad \frac{{\rm d}y}{{\rm d}x}=\frac{f'(x)}{g'(y)}.
g′(y)dy=f′(x)dx,dxdy=g′(y)f′(x).
这里
g
′
(
y
)
g'(y)
g′(y)是将
y
y
y视为自变量,对
y
y
y的导数。
隐函数求导得到的导数一般含有 y y y,但在使用时没有妨碍。
参数方程求导
设
x
,
y
x,y
x,y的函数关系由参数形式确定,即
{
x
=
φ
(
t
)
,
y
=
ψ
(
t
)
.
\left\{ \begin{array}l x=\varphi(t),\\ y=\psi(t). \end{array} \right.
{x=φ(t),y=ψ(t).
如果
φ
(
t
)
\varphi(t)
φ(t)严格单调且
φ
(
t
)
≠
0
\varphi(t)\ne0
φ(t)=0,则有
d
y
d
x
=
d
y
/
d
t
d
x
/
d
t
=
ψ
′
(
t
)
φ
′
(
t
)
=
ψ
′
(
φ
−
1
(
x
)
)
φ
′
(
φ
−
1
(
x
)
)
.
\frac{{\rm d}y}{{\rm d}x}=\frac{{\rm d}y/{\rm d}t}{{\rm d}x/{\rm d}t}=\frac{\psi'(t)}{\varphi'(t)}=\frac{\psi'(\varphi^{-1}(x))}{\varphi'(\varphi^{-1}(x))}.
dxdy=dx/dtdy/dt=φ′(t)ψ′(t)=φ′(φ−1(x))ψ′(φ−1(x)).
证明:
因为
x
=
φ
(
t
)
x=\varphi(t)
x=φ(t)严格单调且递增,所以存在反函数
t
=
φ
−
1
(
x
)
t=\varphi^{-1}(x)
t=φ−1(x),所以
y
=
ψ
(
φ
−
1
(
x
)
)
y=\psi(\varphi^{-1}(x))
y=ψ(φ−1(x)),由复合函数求导法则得到
d
y
d
x
=
ψ
′
(
φ
−
1
(
x
)
)
⋅
[
φ
−
1
(
x
)
]
′
=
ψ
′
(
t
)
φ
′
(
t
)
.
\frac{{\rm d}y}{{\rm d}x}=\psi'(\varphi^{-1}(x))\cdot [\varphi^{-1}(x)]'=\frac{\psi'(t)}{\varphi'(t)}.
dxdy=ψ′(φ−1(x))⋅[φ−1(x)]′=φ′(t)ψ′(t).