函数求导
导数与微分
微分:对函数y=f(x)y=f(x)y=f(x)定义域中的一点x0x_0x0,若存在一个只与x0x_0x0有关,而与Δx\Delta xΔx无关的数g(x0)g(x_0)g(x0),使得当Δx→0\Delta x\to 0Δx→0时恒成立关系式Δy=g(x0)Δx+o(Δx)\Delta y=g(x_0)\Delta x+o(\Delta x)Δy=g(x0)Δx+o(Δx),则称f(x)f(x)f(x)在x0x_0x0处可微,微分为dy=g(x0)dx{\rm d}y=g(x_0){\rm d}xdy=g(x0)dx,即当Δ→0\Delta \to 0Δ→0时Δy\Delta yΔy的线性主部。
导数:对函数y=f(x)y=f(x)y=f(x)定义域中的一点x0x_0x0,如果存在极限
limΔx→0ΔyΔx=limΔx→0f(x0+Δx)−f(x0)Δx=deff′(x0),
\lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\to 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}\stackrel {\rm def}=f'(x_0),
Δx→0limΔxΔy=Δx→0limΔxf(x0+Δx)−f(x0)=deff′(x0),
则称f(x)f(x)f(x)在x0x_0x0处可导,导数为f′(x0)f'(x_0)f′(x0)。
命题:一元函数f(x)f(x)f(x)在x0x_0x0处的可导与可微等价。
证明:
如果可微,即存在关系式Δy=g(x0)Δx+o(Δx)\Delta y=g(x_0)\Delta x+o(\Delta x)Δy=g(x0)Δx+o(Δx),则
limΔx→0ΔyΔx=limΔx→0g(x0)Δx+o(Δx)Δx=g(x0)=deff′(x0).
\lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\to 0}\frac{g(x_0)\Delta x+o(\Delta x)}{\Delta x}=g(x_0)\stackrel {\rm def}=f'(x_0).
Δx→0limΔxΔy=Δx→0limΔxg(x0)Δx+o(Δx)=g(x0)=deff′(x0).
即证明了可导。
如果可导,即存在一个f′(x0)f'(x_0)f′(x0)使得limΔx→0ΔyΔx=f′(x0)\lim\limits _{\Delta x\to 0}\dfrac{\Delta y}{\Delta x}=f'(x_0)Δx→0limΔxΔy=f′(x0),则
limΔx→0[ΔyΔx−f′(x0)]=limΔx→0Δy−f′(x0)ΔxΔx=0,
\lim_{\Delta x\to 0}[\frac{\Delta y}{\Delta x}-f'(x_0)]=\lim_{\Delta x\to 0}\frac{\Delta y-f'(x_0)\Delta x}{\Delta x}=0,
Δx→0lim[ΔxΔy−f′(x0)]=Δx→0limΔxΔy−f′(x0)Δx=0,
即
Δy−f′(x0)Δx=o(Δx),Δy=f′(x0)Δx+o(Δx).
\Delta y-f'(x_0)\Delta x=o(\Delta x),\quad \Delta y=f'(x_0)\Delta x+o(\Delta x).
Δy−f′(x0)Δx=o(Δx),Δy=f′(x0)Δx+o(Δx).
即证明了可微。
用定义对一些初等函数求导
常数函数的导数恒等于000,以下出现Δx\Delta xΔx的式子均省略Δx→0\Delta x\to0Δx→0。
一、求y=sinxy=\sin xy=sinx的导函数
sin(x+Δx)−sinxΔx=2cos2x+Δx2sinΔx2Δx=cos2x+Δx2=cosx.⇓(sinx)′=cosx.
\begin{aligned}
\frac{\sin (x+\Delta x)-\sin x}{\Delta x}=&\frac{2\cos \frac{2x+\Delta x}{2}\sin \frac{\Delta x}{2}}{\Delta x}\\
=&\cos \frac{2x+\Delta x}{2}\\
=&\cos x.\\
\Downarrow \\
(\sin x)'=&\cos x.
\end{aligned}
Δxsin(x+Δx)−sinx===⇓(sinx)′=Δx2cos22x+Δxsin2Δxcos22x+Δxcosx.cosx.
二、求y=cosxy=\cos xy=cosx的导函数
cos(x+Δx)−cosxΔx=−2sin2x+Δx2sinΔx2Δx=−sin2x+Δx2=−sinx.⇓(cosx)′=−sinx.
\begin{aligned}
\frac{\cos (x+\Delta x)-\cos x}{\Delta x}=&\frac{-2\sin \frac{2x+\Delta x}{2}\sin \frac{\Delta x}{2}}{\Delta x}\\
=&-\sin \frac{2x+\Delta x}{2}\\
=&-\sin x.\\
\Downarrow\\
(\cos x)'=&-\sin x.
\end{aligned}
Δxcos(x+Δx)−cosx===⇓(cosx)′=Δx−2sin22x+Δxsin2Δx−sin22x+Δx−sinx.−sinx.
三(1)、求y=lnxy=\ln xy=lnx的导函数
ln(x+Δx)−lnxΔx=lnx+ΔxxΔx=ln(1+Δxx)x⋅Δxx=1x.⇓(lnx)′=1x.
\begin{aligned}
\frac{\ln (x+\Delta x)-\ln x}{\Delta x}=&\frac{\ln\frac{x+\Delta x}{x}}{\Delta x}\\
=&\frac{\ln (1+\frac{\Delta x}{x})}{x\cdot \frac{\Delta x}{x}}\\
=&\frac 1x.\\
\Downarrow \\
(\ln x)'=&\frac 1x.
\end{aligned}
Δxln(x+Δx)−lnx===⇓(lnx)′=Δxlnxx+Δxx⋅xΔxln(1+xΔx)x1.x1.
三(2)、求y=logaxy=\log_a xy=logax的导函数
loga(x+Δx)−logaxΔx=1lna⋅ln(x+Δx)−lnxΔx=1xlna.⇓(logax)′=1xlna.
\begin{aligned}
\frac{\log_a(x+\Delta x)-\log_a x}{\Delta x}=&\frac 1{\ln a}\cdot \frac{\ln (x+\Delta x)-\ln x}{\Delta x}\\
=&\frac {1}{x\ln a}.\\
\Downarrow \\
(\log_a x)'=&\frac 1{x\ln a}.
\end{aligned}
Δxloga(x+Δx)−logax==⇓(logax)′=lna1⋅Δxln(x+Δx)−lnxxlna1.xlna1.
四(1)、求y=exy=e^xy=ex的导函数
ex+Δx−exΔx=ex⋅eΔx−1Δx=ex.⇓(ex)′=ex.
\begin{aligned}
\frac{e^{x+\Delta x}-e^x}{\Delta x}=&e^x\cdot\frac{e^{\Delta x}-1}{\Delta x}=e^x.\\
\Downarrow \\
(e^x)'=&e^x.
\end{aligned}
Δxex+Δx−ex=⇓(ex)′=ex⋅ΔxeΔx−1=ex.ex.
四(2)、求y=axy=a^{x}y=ax的导函数
ax+Δx−axΔx=ax⋅aΔx−1Δx=axlna.⇓(ax)′=axlna.
\begin{aligned}
\frac{a^{x+\Delta x}-a^x}{\Delta x}=&a^x\cdot \frac{a^{\Delta x}-1}{\Delta x}\\
=&a^x\ln a.\\
\Downarrow \\
(a^x)'=&a^x\ln a.
\end{aligned}
Δxax+Δx−ax==⇓(ax)′=ax⋅ΔxaΔx−1axlna.axlna.
五、求y=xay=x^ay=xa的导函数
(x+Δx)a−xaΔx=xa[(1+Δxx)a−1]x⋅Δxx=axa−1.⇓(xa)′=axa−1.
\begin{aligned}
\frac{(x+\Delta x)^a-x^a}{\Delta x}=&\frac{x^a[(1+\frac{\Delta x}{x})^a-1]}{x\cdot\frac{\Delta x}{x}}\\
=&ax^{a-1}.\\
\Downarrow \\
(x^a)'=&ax^{a-1}.
\end{aligned}
Δx(x+Δx)a−xa==⇓(xa)′=x⋅xΔxxa[(1+xΔx)a−1]axa−1.axa−1.
求导(微)的四则运算法则
法则1(线性求导):[c1f(x)+c2g(x)]′=c1f′(x)+c2g′(x)[c_1f(x)+c_2g(x)]'=c_1f'(x)+c_2g'(x)[c1f(x)+c2g(x)]′=c1f′(x)+c2g′(x),d[c1f+c2g]=c1df+c2dg{\rm d}[c_1f+c_2g]=c_1{\rm d}f+c_2{\rm d}gd[c1f+c2g]=c1df+c2dg。
证明:
[c1f(x)+c2g(x)]′=[c1f(x+Δx)+c2g(x+Δx)]−[c1f(x)+c2g(x)]Δx=c1[f(x+Δx)−f(x)]Δx+c2[g(x+Δx)−g(x)]Δx=c1f′(x)+c2g′(x).
\begin{aligned}
[c_1f(x)+c_2g(x)]'=&\frac{[c_1f(x+\Delta x)+c_2g(x+\Delta x)]-[c_1f(x)+c_2g(x)]}{\Delta x}\\
=&\frac{c_1[f(x+\Delta x)-f(x)]}{\Delta x}+\frac{c_2[g(x+\Delta x)-g(x)]}{\Delta x}\\
=&c_1f'(x)+c_2g'(x).
\end{aligned}
[c1f(x)+c2g(x)]′===Δx[c1f(x+Δx)+c2g(x+Δx)]−[c1f(x)+c2g(x)]Δxc1[f(x+Δx)−f(x)]+Δxc2[g(x+Δx)−g(x)]c1f′(x)+c2g′(x).
法则2(乘法求导):[f(x)⋅g(x)]′=f′(x)g(x)+f(x)g′(x)[f(x)\cdot g(x)]'=f'(x)g(x)+f(x)g'(x)[f(x)⋅g(x)]′=f′(x)g(x)+f(x)g′(x),d[fg]=(df)g+f(dg){\rm d}[fg]=({\rm d}f)g+f({\rm d}g)d[fg]=(df)g+f(dg)。
证明:
[f(x)g(x)]′=f(x+Δx)g(x+Δx)−f(x)g(x)Δx=f(x+Δx)g(x+Δx)−f(x+Δx)g(x)Δx+f(x+Δx)g(x)−f(x)g(x)Δx=f(x+Δx)g′(x)+g(x)f′(x)=f′(x)g(x)+f(x)g′(x).
\begin{aligned}
[f(x)g(x)]'=&\frac{f(x+\Delta x)g(x+\Delta x)-f(x)g(x)}{\Delta x}\\
=&\frac{f(x+\Delta x)g(x+\Delta x)-f(x+\Delta x)g(x)}{\Delta x}+\frac{f(x+\Delta x)g(x)-f(x)g(x)}{\Delta x}\\
=&f(x+\Delta x)g'(x)+g(x)f'(x)\\
=&f'(x)g(x)+f(x)g'(x).
\end{aligned}
[f(x)g(x)]′====Δxf(x+Δx)g(x+Δx)−f(x)g(x)Δxf(x+Δx)g(x+Δx)−f(x+Δx)g(x)+Δxf(x+Δx)g(x)−f(x)g(x)f(x+Δx)g′(x)+g(x)f′(x)f′(x)g(x)+f(x)g′(x).
法则3(倒数求导):[1g(x)]′=−g′(x)[g(x)]2[\dfrac 1{g(x)}]'=-\dfrac{g'(x)}{[g(x)]^2}[g(x)1]′=−[g(x)]2g′(x),d(1g)=−dgg2{\rm d}(\dfrac{1}{g})=-\dfrac{{\rm d}g}{g^2}d(g1)=−g2dg。
证明:
[1g(x)]′=1g(x+Δx)−1g(x)Δx=1g(x+Δx)g(x)⋅g(x)−g(x+Δx)Δx=−g′(x)[g(x)]2.
\begin{aligned}
\left[\frac 1{g(x)}\right]'=&\frac{\frac 1{g(x+\Delta x)}-\frac 1{g(x)}}{\Delta x}\\
=&\frac{1}{g(x+\Delta x)g(x)}\cdot\frac{g(x)-g(x+\Delta x)}{\Delta x}\\
=&\frac{-g'(x)}{[g(x)]^2}.
\end{aligned}
[g(x)1]′===Δxg(x+Δx)1−g(x)1g(x+Δx)g(x)1⋅Δxg(x)−g(x+Δx)[g(x)]2−g′(x).
法则4(除法求导):[f(x)g(x)]′=f′(x)g(x)−f(x)g(x)[g(x)]2[\dfrac {f(x)}{g(x)}]'=\dfrac{f'(x)g(x)-f(x)g(x)}{[g(x)]^2}[g(x)f(x)]′=[g(x)]2f′(x)g(x)−f(x)g(x),d[fg]=(df)g−f(dg)g2{\rm d}[\dfrac fg]=\dfrac{({\rm d}f)g-f({\rm d}g)}{g^2}d[gf]=g2(df)g−f(dg)。
证明:法则2+法则3=法则4。
法则5(多项乘法求导):可用数学归纳法证明。
[∏i=1nfi(x)]′=∑i=1n[fi′(x)∏j=1;j≠infj(x)].
\left[\prod_{i=1}^n f_i(x)\right]'=\sum_{i=1}^n \left[f_i'(x)\prod_{j=1;j\ne i}^nf_j(x)\right].
[i=1∏nfi(x)]′=i=1∑n⎣⎡fi′(x)j=1;j=i∏nfj(x)⎦⎤.
反函数求导
命题:若函数y=f(x)y=f(x)y=f(x)在(a,b)(a,b)(a,b)上连续、严格单调、可导且f′(x)≠0f'(x)\ne 0f′(x)=0,记α=min(f(a+),f(b−)),β=max(f(a+),f(b−))\alpha=\min (f(a^+),f(b^-)),\beta=\max (f(a^+),f(b^-))α=min(f(a+),f(b−)),β=max(f(a+),f(b−)),则反函数x=f−1(y)x=f^{-1}(y)x=f−1(y)在(α,β)(\alpha,\beta)(α,β)上可导,且[f−1(y)]′=1f′(x)[f^{-1}(y)]'=\dfrac1{f'(x)}[f−1(y)]′=f′(x)1。
证明:
由反函数存在定理,x=f−1(y)x=f^{-1}(y)x=f−1(y)存在,且Δy=f(x+Δx)−f(x)≠0\Delta y=f(x+\Delta x)-f(x)\ne 0Δy=f(x+Δx)−f(x)=0,等价于
Δx=f−1(y+Δy)−f−1(y)≠0.
\Delta x=f^{-1}(y+\Delta y)-f^{-1}(y)\ne 0.
Δx=f−1(y+Δy)−f−1(y)=0.
且当Δx→0\Delta x\to 0Δx→0时有Δy→0\Delta y\to 0Δy→0(以上可以通过图像看出)。
[f−1(y)]′=limΔy→0f−1(y+Δy)−f−1(y)Δy=limΔx→0Δxf(x+Δx)−f(x)=1f′(x).
\begin{aligned}
[f^{-1}(y)]'=&\lim_{\Delta y\to 0}\frac{f^{-1}(y+\Delta y)-f^{-1}(y)}{\Delta y}\\
=&\lim_{\Delta x\to 0}\frac{\Delta x}{f(x+\Delta x)-f(x)}\\
=&\frac{1}{f'(x)}.
\end{aligned}
[f−1(y)]′===Δy→0limΔyf−1(y+Δy)−f−1(y)Δx→0limf(x+Δx)−f(x)Δxf′(x)1.
这一点可以记作
dxdy=[dydx]−1.
\frac{{\rm d} x}{{\rm d} y}=\left[\frac{{\rm d} y}{{\rm d} x}\right]^{-1}.
dydx=[dxdy]−1.
用反函数求导求反三角函数的导数
一、求y=arcsinx,x∈[−1,1]y=\arcsin x,x\in [-1,1]y=arcsinx,x∈[−1,1]的导函数
这里x=siny,y=[−π2,π2]x=\sin y,y=[-\frac \pi2,\frac \pi2]x=siny,y=[−2π,2π]是其导函数,所以
dydx=[dxdy]−1=1cosy=1cosarcsinx=11−x2.
\begin{aligned}
&\frac{{\rm d}y}{{\rm d}x}=\left[\frac{{\rm d}x}{{\rm d}y}\right]^{-1}\\
=&\frac{1}{\cos y}\\
=&\frac{1}{\cos \arcsin x}\\
=&\frac{1}{\sqrt{1-x^2}}.
\end{aligned}
===dxdy=[dydx]−1cosy1cosarcsinx11−x21.
二、求y=arccosx,x∈[−1,1]y=\arccos x,x\in [-1,1]y=arccosx,x∈[−1,1]的导函数
这里x=cosy,y∈[0,π]x=\cos y,y\in [0,\pi]x=cosy,y∈[0,π]是其反函数,所以
dydx=[dxdy]−1=−1siny=−11−cos2y=−11−x2.
\begin{aligned}
&\frac{{\rm d}y}{{\rm d}x}=\left[\frac{{\rm d}x}{{\rm d}y}\right]^{-1}\\
=&-\frac{1}{\sin y}\\
=&-\frac{1}{\sqrt{1-\cos^2 y}}\\
=&-\frac{1}{\sqrt{1-x^2}}.
\end{aligned}
===dxdy=[dydx]−1−siny1−1−cos2y1−1−x21.
三、求y=arctanx,x∈Ry=\arctan x,x\in \Ry=arctanx,x∈R的导函数
这里x=tany,y∈[−π2,π2]x=\tan y,y\in [-\frac \pi 2,\frac \pi2]x=tany,y∈[−2π,2π]是其反函数,所以
dydx=[dxdy]−1=1sec2y=11+tan2y=11+x2.
\begin{aligned}
&\frac{{\rm d}y}{{\rm d}x}=\left[\frac{{\rm d}x}{{\rm d}y}\right]^{-1}\\
=&\frac{1}{\sec^2 y}\\
=&\frac{1}{1+\tan^2y}\\
=&\frac{1}{1+x^2}.
\end{aligned}
===dxdy=[dydx]−1sec2y11+tan2y11+x21.
复合函数求导的链式法则
命题:设u=g(x)u=g(x)u=g(x)在x=x0x=x_0x=x0处可导且y=f(u)y=f(u)y=f(u)在u=u0=g(x0)u=u_0=g(x_0)u=u0=g(x0)处可导,则复合函数y=f(g(x))y=f(g(x))y=f(g(x))在x=x0x=x_0x=x0处可导,且有[f(g(x))]′=f′(u0)g′(x0)=f′(g(x0))g′(x0)[f(g(x))]'=f'(u_0)g'(x_0)=f'(g(x_0))g'(x_0)[f(g(x))]′=f′(u0)g′(x0)=f′(g(x0))g′(x0)。
证明:
由于y=f(u)y=f(u)y=f(u)在u0u_0u0处可导,所以可微,故存在一个无穷小量α\alphaα满足limΔu→0α=0\lim\limits_{\Delta u\to 0}\alpha=0Δu→0limα=0,且
f(u0+Δu)−f(u0)=f′(u0)Δu+αΔu.
f(u_0+\Delta u)-f(u_0)=f'(u_0)\Delta u+\alpha\Delta u.
f(u0+Δu)−f(u0)=f′(u0)Δu+αΔu.
如果让Δu=0\Delta u=0Δu=0时α=0\alpha=0α=0,则上式对Δu=0\Delta u=0Δu=0依然成立。设Δu=g(x0+Δx)−g(x0)\Delta u=g(x_0+\Delta x)-g(x_0)Δu=g(x0+Δx)−g(x0),这样就有
f(u0+Δu)−f(u0)Δx=f(g(x0+Δx))−f(g(x0))Δx=f′(u0)ΔuΔx+αΔuΔx.
\frac{f(u_0+\Delta u)-f(u_0)}{\Delta x}=\frac{f(g(x_0+\Delta x))-f(g(x_0))}{\Delta x}=f'(u_0)\frac{\Delta u}{\Delta x}+\alpha\frac{\Delta u}{\Delta x}.
Δxf(u0+Δu)−f(u0)=Δxf(g(x0+Δx))−f(g(x0))=f′(u0)ΔxΔu+αΔxΔu.
令Δx→0\Delta x\to 0Δx→0,则由Δu=g(u0)Δx+o(Δx)\Delta u=g(u_0)\Delta x+o(\Delta x)Δu=g(u0)Δx+o(Δx)得Δu→0\Delta u\to 0Δu→0,于是
limΔx→0f(g(x0+Δx))−f(g(x0))Δx=limΔx→0f′(u0)g′(x0)+g′(x0)limΔu→0α=f′(u0)g′(x0).
\lim_{\Delta x\to 0}\frac{f(g(x_0+\Delta x))-f(g(x_0))}{\Delta x}=\lim_{\Delta x\to 0}f'(u_0)g'(x_0)+g'(x_0)\lim_{\Delta u\to 0}\alpha=f'(u_0)g'(x_0).
Δx→0limΔxf(g(x0+Δx))−f(g(x0))=Δx→0limf′(u0)g′(x0)+g′(x0)Δu→0limα=f′(u0)g′(x0).
也可以写成链式法则:
dydx=dydu⋅dudx.
\frac{{\rm d}y}{{\rm d}x}=\frac{{\rm d}y}{{\rm d}u}\cdot \frac{{\rm d}u}{{\rm d}x}.
dxdy=dudy⋅dxdu.
微分形式为
d[f(g(x))]=f′(g(x))g′(x)dx.
{\rm d}[f(g(x))]=f'(g(x))g'(x){\rm d}x.
d[f(g(x))]=f′(g(x))g′(x)dx.
由此可以推出一阶微分的形式不变性,即u=g(x),y=f(u)u=g(x),y=f(u)u=g(x),y=f(u),有
d[f(u)]=f′(u)du.
{\rm d}[f(u)]=f'(u){\rm d}u.
d[f(u)]=f′(u)du.
虽然这里uuu不是自变量,但依然可以把uuu当成自变量来计算f(u)f(u)f(u)的微分。
对数求导法
对数求导法适用于形如y=f(x)=u(x)v(x)y=f(x)=u(x)^{v(x)}y=f(x)=u(x)v(x)的函数求导,这种函数也叫幂指函数。
首先令z(x)=lny=v(x)lnu(x)z(x)=\ln y=v(x)\ln u(x)z(x)=lny=v(x)lnu(x),则
z′(x)=v′(x)lnu(x)+v(x)u′(x)u(x),z′(x)=y′(x)y(x),
z'(x)=v'(x)\ln u(x)+\frac{v(x)u'(x)}{u(x)},\\
z'(x)=\frac{y'(x)}{y(x)},
z′(x)=v′(x)lnu(x)+u(x)v(x)u′(x),z′(x)=y(x)y′(x),
综合两式得到
y′(x)=[v′(x)lnu(x)+v(x)u′(x)u(x)]⋅u(x)v(x).
y'(x)=\left[v'(x)\ln u(x)+\frac{v(x)u'(x)}{u(x)} \right]\cdot u(x)^{v(x)}.
y′(x)=[v′(x)lnu(x)+u(x)v(x)u′(x)]⋅u(x)v(x).
这是一种将复杂函数转化为简单初等函数求导的方法,重点是找到一个转换关系充当yyy与u,vu,vu,v之间的桥梁。
隐函数求导
隐函数求导依赖于复合函数的求导法则、乘法求导法则与一阶微分的形式不变性。在求导时直接对隐函数的两边同时求微分或者求导即可。如
exy+x2y=1,
e^{xy}+x^2y=1,
exy+x2y=1,
两边同时求导,有
(y+xy′)exy+2xy+x2y′=0
(y+xy')e^{xy}+2xy+x^2y'=0
(y+xy′)exy+2xy+x2y′=0
解出
y′=−yexy+2xyxexy+x2=−y(exy+2x)x(exy+x).
y'=-\frac{ye^{xy}+2xy}{xe^{xy}+x^2}=-\frac{y(e^{xy}+2x)}{x(e^{xy}+x)}.
y′=−xexy+x2yexy+2xy=−x(exy+x)y(exy+2x).
对于变量分离的隐函数g(y)=f(x)g(y)=f(x)g(y)=f(x),两边同时求微分,得到
g′(y)dy=f′(x)dx,dydx=f′(x)g′(y).
g'(y){\rm d}y=f'(x){\rm d}x,\quad \frac{{\rm d}y}{{\rm d}x}=\frac{f'(x)}{g'(y)}.
g′(y)dy=f′(x)dx,dxdy=g′(y)f′(x).
这里g′(y)g'(y)g′(y)是将yyy视为自变量,对yyy的导数。
隐函数求导得到的导数一般含有yyy,但在使用时没有妨碍。
参数方程求导
设x,yx,yx,y的函数关系由参数形式确定,即
{x=φ(t),y=ψ(t).
\left\{
\begin{array}l
x=\varphi(t),\\
y=\psi(t).
\end{array}
\right.
{x=φ(t),y=ψ(t).
如果φ(t)\varphi(t)φ(t)严格单调且φ(t)≠0\varphi(t)\ne0φ(t)=0,则有
dydx=dy/dtdx/dt=ψ′(t)φ′(t)=ψ′(φ−1(x))φ′(φ−1(x)).
\frac{{\rm d}y}{{\rm d}x}=\frac{{\rm d}y/{\rm d}t}{{\rm d}x/{\rm d}t}=\frac{\psi'(t)}{\varphi'(t)}=\frac{\psi'(\varphi^{-1}(x))}{\varphi'(\varphi^{-1}(x))}.
dxdy=dx/dtdy/dt=φ′(t)ψ′(t)=φ′(φ−1(x))ψ′(φ−1(x)).
证明:
因为x=φ(t)x=\varphi(t)x=φ(t)严格单调且递增,所以存在反函数t=φ−1(x)t=\varphi^{-1}(x)t=φ−1(x),所以y=ψ(φ−1(x))y=\psi(\varphi^{-1}(x))y=ψ(φ−1(x)),由复合函数求导法则得到
dydx=ψ′(φ−1(x))⋅[φ−1(x)]′=ψ′(t)φ′(t).
\frac{{\rm d}y}{{\rm d}x}=\psi'(\varphi^{-1}(x))\cdot [\varphi^{-1}(x)]'=\frac{\psi'(t)}{\varphi'(t)}.
dxdy=ψ′(φ−1(x))⋅[φ−1(x)]′=φ′(t)ψ′(t).