3D Face Reconstruction from a Single Image

学习,诺丁汉大学和金斯顿大学的一队AI专家,最近的一个新研究成果:使用机器学习算法,只需要一张人脸照片,就能生成3D人脸。

怎么做到的?其实背后是一个卷积神经网络,研究人员把大量人脸数据喂给这个网络进行训练,最终这个AI学会了从照片脑补出3D人脸。

Demo

想尝试一下的朋友,可以赶紧前往下面这个网址:

http://cs.nott.ac.uk/~psxasj/3dme/

论文

这个团队还把研究成果公布了出来。

《Large Pose 3D Face Reconstruction from a Single Image via Direct Volumetric CNN Regression》

摘要:

3D面部重建是一个非常困难的基础计算机视觉问题。

目前的系统通常使用多张面部图片作为输入,并且需要解决诸多挑战,例如需要在大型面部姿态中建立密集的对应,要受到表情、不均匀光照等影响。一般来说,这些方法需要复杂和低效的管道来建模和拟合。

在这项研究中,我们提出通过由2D图像和3D面部模型或扫描组成数据集,并在这个数据集上训练卷积神经网络(CNN)来解决这些限制。

我们的CNN只需要使用一个2D面部图像,不需要精确的对准,也不需要在图像之间建立密集对应。这个方法适用于重建整个3D面部几何(包括不可见部分)。我们通过一个简单的CNN架构来实现这一点,这个架构对单个2D图像的3D面部几何进行体积表征的直接回归。

我们还展示了如何将面部地标定位的相关任务纳入提出的框架,这有助于提高重建质量,特别是在大型姿态和面部表情的情况下。

研究的代码也已经公布在GitHub上,https://github.com/AaronJackson/vrn

软件要求:

  • Torch7

  • MATLAB

  • Nvidia GPU(装好CUDA和CuDNN)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值