深度学习单图三维人脸重建

19 篇文章 13 订阅 ¥29.90 ¥99.00
本文深入探讨了使用深度学习进行单张图像三维人脸重建的技术,涉及3DMM模型、数据集、3DMM CNN、Volumetric CNN、PRNet和MoFa等方法。通过这些方法,研究人员尝试从单个图像中直接估计3D面部特征,解决真实数据集获取难题,并实现自监督重建。
摘要由CSDN通过智能技术生成

基于图像的人脸三维重建在人脸分析与娱乐领域里有巨大的应用场景,本文来介绍初学深度学习单张图像人脸三维重建必须要读的文章。

1 3DMM与数据集
虽然这里推荐的是深度学习三维人脸重建需要读的文章,但是因为经常需要用到经典的3DMM模型以及一些数据集,包括最著名的中性表情BFM模型及其2017年新增表情的版本,国内浙大开源的带表情的FareWareHouse数据集。

文章引用量:4000+

推荐指数:✦✦✦✦✦

[1] Blanz V, Vetter T. A morphable model for the synthesis of 3D faces[C]//Siggraph. 1999, 99(1999): 187-194.

[2] Cao C, Weng Y, Zhou S, et al. Facewarehouse: A 3d facial expression database for visual computing[J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 20(3): 413-425.

2 3DMM CNN系列
3DMM CNN是早期使用CNN直接估计3DMM模型形状

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

种豆得瓜er

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值