通俗易懂贝叶斯公式

大白话AI | 图像生成模型DDPM | 扩散模型 | 生成模型 | 概率扩散去噪生成模型_哔哩哔哩_bilibili

1 题目

如下情景:小明坐公家车回家概率是20%,坐地铁的概率是80%,在公交车站旁抓到娃娃的概率是80%,而在地铁里面抓到的概率是30%,请问小明抓到娃娃的情况下坐地铁和公交回家的概率各是多少。

2 解析题目

定义坐公交事件、坐地铁事件和抓到娃娃事件分别为X, Y,W。则抓到娃娃的前提下,坐公交和地铁的概率分别是多少,即是求P(X|W)和P(Y|W)?

如下画一个边长为1的正方形,它的面积表示小明回家的所有可能即100%,其中坐公交回家的概率P(X)=0.2,坐地铁的概率P(Y)=0.8,小明坐公交的前提下抓到娃娃的概率P(W|X)=0.8; 坐地铁的前提下抓到娃娃的概率P(W|Y)=0.3。

条件概率 P(W∣X)

这是给定事件 X 已经发生的情况下,事件 W 发生的概率,即黄色矩形高度0.8。

P(W∣X) 告诉我们小明在已经选择了公交的前提下,有多大的可能性会抓到娃娃。

联合概率 P(W∣X)⋅P(X)或 P(W∩X)

联合概率是两个事件同时发生的概率:即事件 X 发生,并且在此基础上事件 W 也发生了,即黄色区域面积0.8*0.2。

在此例子中,这是指小明既选择了公交车又抓到了娃娃的概率。这个值不仅考虑了小明选择公交后抓到娃娃的可能性P(W∣X),还考虑了小明选择坐公交车这一行为本身的概率P(X)。因此,它是两个概率的乘积。

抓到娃娃的概率P(W):

P(W)是黄色和青色的面积之和。 抓到娃娃的概率等于:

指小明既选择了公交车又抓到了娃娃的概率P(W∣X)⋅P(X);

加上小明既选择了地铁又抓到了娃娃的概率P(W∣Y)⋅P(Y)。

P(W) = P(W∣X)⋅P(X) + P(W∣Y)⋅P(Y)

3 求P(X|W)和P(Y|W)

其中抓到娃娃的概率是P(W),即图中黄色加青色面积之和,而小明既选择了公交车又抓到了娃娃的联合概率P(W∣X)⋅P(X),即黄色区域面积。两个面积的比值就是P(X|W),也叫做贝叶斯公式,如下所示。

4 贝叶斯公式

A和B是两个随机事件,P(A)和P(B)分别表示这两个随机事件发生的概率。

P(B|A)表示A发生的情况下B事件发生的概率;P(A|B)表示B发生的情况下A事件发生的概率;

在刚才的例子中,假设P(A)表示小明坐公交的概率,P(B)表示抓到娃娃的概率。

(1)先验概率:在观察到事件B之前,假设事件A成立的概率,所以P(A)称为“先验概率”;

(2)后验概率:P(A|B)同样表示小明坐公交的概率,但是是在抓到娃娃事件发生后,坐公交的概率,所以称为“后验概率”;

(3)证据:P(A|B)称为后验概率,是因为发生了事件B,所以事件B也称为“证据”;

(4)似然:P(B|A)表示在坐公交事件A发生的前提下,抓到娃娃事件B“似乎”很有可能发生,所以称为“似然”。似然不是指概率,而是指一种相对度量,用于比较不同假设对同一组观测数据的解释能力。当我们改变假设A时,我们可以计算不同的P(B∣A)值,以确定哪一个假设最能解释我们观察到的数据B。因此,似然函数可以看作是关于假设坐公交事件A的函数,其中观测B抓到娃娃事件是固定的、确定的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.Q

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值