【机器学习】什么是熵?

熵是热力学中的一个重要概念,表示系统状态的无序程度。第二定律指出,孤立系统会自发向熵最大的状态演化。通过玻尔兹曼公式,熵可以被量化为S=k*ln(W),其中W是微观态数。举例说明,一个气体分子在隔板两侧的状态,从隔板拆除导致熵增加,因为分子分布变得更加均匀。当分子均匀分布时,熵达到最大。因此,熵是衡量系统内信息不确定性和微观状态多样性的度量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

热力学中的熵

热力学第二定律指出,孤立系统自发的朝着热力学平衡方向最大熵状态演化。(即孤立系统的熵越来越高)

熵如何量化

统计学中的玻尔兹曼公式给出了一个密闭空间内熵的量化方式:
S = k ∗ l n ( W ) S = k * ln(W) S=kln(W)

其中 S 是熵,k 是 玻尔兹曼常数,ln 是 自然对数,W 是系统的微观态数的总和(即当前状态下微观粒子的排列组合数)。

例:
以下有一个密闭空间内气体分子的运动为例。
状态A:存在一个隔板将空间中的分子运动限制在孤立空间的左侧。
状态B:将隔板拆除,左侧的分子开始向右侧扩散,直至均匀分布在整个孤立空间。
在这里插入图片描述
A状态下的熵:
S a = k ∗ l n ( W a ) S_a = k * ln(W_a) Sa=kln(Wa)
A状态下的微观态数可视为当前状态下的微观粒子的排列组合数,即选取全部N个蓝分子放入左侧空间,再放入全部N个红分子。
W a = C N N C N N = 1 W_a = C_N ^N C_N ^N = 1 Wa=CNNCNN=1

B状态下的熵:
S b = k ∗ l n ( W b ) S_b = k * ln(W_b) Sb=kln(Wb)
B状态下的微观态数可视为当前状态下的微观粒子的排列组合数,即从 N N N个蓝分子中选取 N A N_A NA个放入左侧空间,剩下的 N − N A N-N_A NNA个放在右侧。再从 N N N个红分子中选取 N B N_B NB个放入左侧空间,剩下的 N − N B N-N_B NNB个放在右侧。
故:
W b = C N N A C N − N A N − N A C N N B C N − N B N − N B = C N N A C N N B = N ! N A ! ⋅ ( N − N A ) ! ⋅ N ! N B ! ⋅ ( N − N B ) ! W_b = C_N^{N_A}C_{N-N_A}^{N-N_A} C_N^{N_B}C_{N-N_B}^{N-N_B} = C_N^{N_A}C_N^{N_B} = \frac{N!}{N_A!·(N-N_A)! }·\frac{N!}{N_B!·(N-N_B)! } Wb=CNNACNNANNACNNBCNNBNNB=CNNACNNB=NA!(NNA)!N!NB!(NNB)!N!

N a ! = N , 其 N b ! = N 时 , W b > 1 , 即 W b > W a 。 即 S b > S a 。 N_a!=N,其N_b!=N时,W_b>1,即W_b>W_a。即 S_b > S_a。 Na!=N,Nb!=NWb>1,Wb>WaSb>Sa

所以我们可以得知,从状态A到状态B,孤立空间的熵在增加。

由下列的 N A − S N_A-S NAS曲线我们得知当 N A = N B = N / 2 N_A = N_B =N/2 NA=NB=N/2时,孤立空间熵的值达到最大。

在这里插入图片描述
由此可知,该孤立系统的最大熵平衡状态为蓝红分子均匀分布于孤立空间内。

(在这里,简化了计算的情况,只将孤立空间分为2个部分,其实我们可以分成更多的部分,以增加W的数量,提高准确性)

所以,熵是什么?

熵是一种信息度量,体现了在系统当前状态下,个体组合方式的多样性程度。
在一个孤立系统中它具有不可逆增加的特性。

<think>好的,用户想了解的定义及其在信息论和热力学中的意义。首先,我需要回顾一下的基本概念,确保覆盖两个主要领域:热力学和信息论。 根据引用[1],热力学中的是表示分子状态混乱程度的物理量,而信息论中的描述信源的不确定性。用户可能想知道这两者的联系和区别。引用[2]提到最早起源于物理学,用于度量系统的无序程度,后来香农将其引入信息论。需要解释香农的信息定义,可能涉及公式,比如H(X) = -Σ p(x) log p(x),但用户要求行内数学表达式用$...$,所以应该写成$H(X) = -\sum p(x) \log p(x)$。 另外,引用[3]指出两者的核心思想都是对“可能状态”或“不确定性”的量化,但应用领域不同。需要强调热力学关注微观状态数量,信息关注信息的不确定性。同时,引用[4]提到香农的信息论不考虑人的主体因素,这可能是一个需要注意的点,但用户的问题可能更关注基本定义,所以可能不需要深入这一点,但可以简要提及。 用户的问题结构需要分点回答,热力学中的和信息论中的分开说明。需要确保LaTeX格式正确,比如独立公式用$$...$$,例如热力学中的的公式:$$S = k_B \ln \Omega$$,其中k_B是玻尔兹曼常数,Ω是微观状态数。而信息的公式:$$H(X) = -\sum_{i=1}^n p(x_i) \log p(x_i)$$。 另外,用户要求生成相关问题,可能需要围绕的应用、两者区别、在机器学习中的使用等来提问。例如,机器学习中的应用,或者热力学与信息的联系。 需要检查是否所有数学表达式都正确使用$或$$,例如变量如$S$,公式单独成段时用$$。同时,引用标识需要自然地添加在引用内容的末尾,比如在提到热力学时加[^1],信息论时加[^2]等。 还要注意回答的结构清晰,分点说明定义和意义,可能先讲热力学,再讲信息论,最后比较两者的异同。确保每个部分都有对应的引用支持,比如热力学的定义来自引用[1]和[2],信息论的定义来自引用[1]、[2]、[3],比较部分来自引用[3]和[4]。 可能需要避免过于技术化的术语,用中文简明解释。例如,信息的公式中的每个符号的意义,p(x_i)代表概率,log的底数通常是2,单位是比特等。但用户的问题可能不需要太深入,所以保持简洁。 最后生成相关问题,可以包括的应用、区别、优化方法等,确保问题与用户提供的引用内容相关,比如机器学习中的概念,或者香农信息论的局限性。 总结步骤:先回答的定义,分热力学和信息论两部分,然后比较两者的意义,最后生成相关问题。确保所有数学表达式格式正确,引用标识正确放置,语言简洁明了。</think>### 的定义及其意义 #### 1. **热力学中的** 热力学是描述系统微观状态混乱程度的物理量,其定义式为: $$ S = k_B \ln \Omega $$ 其中,$S$表示,$k_B$为玻尔兹曼常数,$\Omega$是系统可能的微观状态数。越大,系统无序性越高。例如,气体扩散时微观状态数增加,值随之增大[^2]。 #### 2. **信息论中的** 信息由香农提出,用于量化信源的不确定性,公式为: $$ H(X) = -\sum_{i=1}^n p(x_i) \log p(x_i) $$ 其中,$p(x_i)$是事件$x_i$发生的概率。值越高,不确定性越大,传递的信息量也越大。例如,抛一枚均匀硬币的为$1$比特(若以2为底),表示结果难以预测。 #### 3. **两者联系与区别** - **联系**:均通过“可能状态的多样性”度量不确定性。热力学关注微观粒子状态,信息关注概率分布的混乱程度[^3]。 - **区别**: - 热力学是物理量,受能量守恒约束;信息是抽象度量,用于通信与数据处理。 - 香农信息论仅量化符号的统计特性,未涉及语义或人的主观影响[^4]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值