百度千帆--国内最让人失望的开放大模型

背景

作者为什么要说百度千帆-是国内最让人失望的开放大模型呢?下面作者用实事说话

不同厂商大模型使用

腾讯 混元

https://cloud.tencent.com/document/api/1729/101848

阿里 百炼(通义千问)

https://help.aliyun.com/zh/model-studio/qwen-api-reference

deepseek

https://api-docs.deepseek.com/zh-cn/


百度 千帆

https://cloud.baidu.com/doc/qianfan-api/s/Dmba8k71y

问题解决

说是得进这个控制台。

https://console.bce.baidu.com/qianfan/ais/console/applicationConsole/application/v2


 

我想说:重点是你的报错一点看不出问题实际原因,而且别人家接口我也是第一次调用为什么就没有这种问题?

总结

我们不诋毁百度千帆的形象,实在是你这东西经过我的验证后不行。东西不过硬~

  

附件一:国内主流大模型概览

大模型名称提供方主要特点适用场景
阿里云大模型阿里云兼容OpenAI API接口,提供多种规格模型企业级应用、云计算集成
百度文心大模型百度中文优化好,支持长上下文知识问答、文档摘要
腾讯混元大模型腾讯集成腾讯生态,稳定性高中小规模业务、内部工具开发
华为盘古大模型华为行业专用模型,昇腾芯片优化工业、医疗等垂直领域
讯飞星火大模型科大讯飞语音识别能力强,教育领域优化教育、语音交互应用
商汤大模型商汤科技计算机视觉领域领先安防、自动驾驶等
智谱AI大模型智谱AI提供免费API,开发友好研究实验、轻量级应用
MiniMax大模型MiniMax多模态能力,社交娱乐优化社交、娱乐应用开发
Moonshot大模型月之暗面支持超长上下文专业文档分析、法律咨询
字节跳动大模型字节跳动短视频内容生成优化短视频、内容创作平台

附件二:场景及适用的国内主流大模型

场景适用模型
智能客服腾讯混元、讯飞星火、智谱AI等模型适合构建对话系统
内容创作百度文心、字节跳动大模型在文本生成方面表现优异
数据分析华为盘古、阿里云大模型擅长处理结构化数据
多模态应用商汤、MiniMax支持图像和视频内容生成
专业领域Moonshot适合长文档分析,盘古适合工业场景

附件三:国内知名大模型开放API地址

平台名称API地址
智谱AIhttps://open.bigmodel.cn/api/paas/v4/chat/completions
百度文心一言https://cloud.baidu.com/doc/WENXINWORKSHOP/s/flfmc9do2
阿里通义千问https://help.aliyun.com/zh/dashscope/developer-reference/api-details
月之暗面Kimihttps://platform.moonshot.cn/docs/api
百川智能https://platform.baichuan-ai.com/docs/api
讯飞星火https://xinghuo.xfyun.cn/sparkapi
腾讯混元https://cloud.tencent.com/document/product/1729/101848
深度求索DeepSeekhttps://api-docs.deepseek.com/zh-cn/
零一万物https://platform.lingyiwanwu.com/
阶跃星辰https://platform.stepfun.com/
商汤日日新https://platform.sensenova.cn/home
昆仑万维天工https://model-platform.tiangong.cn/api-reference
华为盘古https://support.huawei.com/enterprise/zh/doc/EDOC1100327551
出门问问https://ai.chumenwenwen.com/pages/document/get-started
360智脑https://ai.360.com/open
面壁智能https://modelbest.cn/
元象大模型https://chat.xverse.cn/
内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略与效果评估体系,涵盖当前企业传播面临的预算、资源、内容与效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势与发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化与GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理与舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率与ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放与GEO优化,提升品牌在AI搜索中的权威性与可见性;④通过数据驱动评估体系量化品牌影响力与销售转化效果。; 阅读建议:建议结合文中提供的实操清单、案例分析与工具指南进行系统学习,重点关注媒体适配性策略与GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞火流星02027

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值