MATLAB中bicgstab函数用法

目录

语法

说明

示例

线性系统的迭代解

使用指定了预条件子的 bicgstab

提供初始估计值

使用函数句柄代替数值矩阵


        bicgstab函数功能是求解线性系统 - 稳定双共轭梯度法。

语法

x = bicgstab(A,b)
x = bicgstab(A,b,tol)
x = bicgstab(A,b,tol,maxit)
x = bicgstab(A,b,tol,maxit,M)
x = bicgstab(A,b,tol,maxit,M1,M2)
x = bicgstab(A,b,tol,maxit,M1,M2,x0)
[x,flag] = bicgstab(___)
[x,flag,relres] = bicgstab(___)
[x,flag,relres,iter] = bicgstab(___)
[x,flag,relres,iter,resvec] = bicgstab(___)

说明

        x = bicgstab(A,b) 尝试使用双共轭梯度稳定法求解关于 x 的线性系统 A*x = b。如果尝试成功,bicgstab 会显示一条消息来确认收敛。如果 bicgstab 无法在达到最大迭代次数后收敛或出于任何原因暂停,则会显示一条包含相对残差 norm(b-A*x)/norm(b) 以及该方法停止时的迭代次数的诊断消息。

        x = bicgstab(A,b,tol) 指定该方法的容差。默认容差是 1e-6。

        x = bicgstab(A,b,tol,maxit) 指定要使用的最大迭代次数。如果 bicgstab 无法在 maxit 次迭代内收敛,将显示诊断消息。

        x = bicgstab(A,b,tol,maxit,M) 指定预条件子矩阵 M 并通过有效求解关于 y 的方程组 AM^−1
y=b 来计算 x,其中 y=Mx。使用预条件子矩阵可以改善问题的数值属性和计算的效率。

        x = bicgstab(A,b,tol,maxit,M1,M2) 指定预条件子矩阵 M 的因子,使得 M = M1*M2。

        x = bicgstab(A,b,tol,maxit,M1,M2,x0) 指定解向量 x 的初始估计值。默认值为由零组成的向量。

        [x,flag] = bicgstab(___) 返回一个标志,指示算法是否成功收敛。当 flag = 0 时,收敛成功。您可以将此输出语法用于之前的任何输入参数组合。如果指定了 flag 输出,bicgstab 将不会显示任何诊断消息。

        [x,flag,relres] = bicgstab(___) 还会返回相对残差 norm(b-A*x)/norm(b)。如果 flag 为 0,则 relres <= tol。

        [x,flag,relres,iter] = bicgstab(___) 还会返回计算出 x 时的迭代次数 iter。

        [x,flag,relres,iter,resvec] = bicgstab(___) 还会在每个二分之一迭代中返回残差范数向量(包括第一个残差 norm(b-A*x0))。

示例

线性系统的迭代解

        使用采用默认设置的 bicgstab 求解系数矩阵为方阵的线性系统,然后在求解过程中调整使用的容差和迭代次数。

        创建密度为 50% 的随机稀疏矩阵 A。另为 Ax=b 的右侧创建随机向量 b。

rng default
A = sprand(400,400,.5);
A = A'*A;
b = rand(400,1);

        使用 bicgstab 求解 Ax=b。输出显示包括相对残差的值。

x = bicgstab(A,b);


bicgstab stopped at iteration 20 without converging to the desired tolerance 1e-06
because the maximum number of iterations was reached.
The iterate returned (number 20) has relative residual 0.12.

        默认情况下,bicgstab 使用 20 次迭代和容差 1e-6,对于此矩阵,算法无法在 20 次迭代后收敛。由于残差仍然很大,这说明需要更多的迭代(或预条件子矩阵)。您也可以使用更大的容差,使算法更容易收敛。

        使用容差 1e-4 和 100 次迭代再次求解方程组。

x = bicgstab(A,b,1e-4,100);


bicgstab stopped at iteration 100 without converging to the desired tolerance 0.0001
because the maximum number of iterations was reached.
The iterate returned (number 100) has relative residual 0.044.

        即使采用更宽松的容差和更多迭代,残差也并未改进多少。当迭代算法以这种方式停滞时,显然需要预条件子矩阵。

        计算 A 的不完全 Cholesky 分解,并使用 L' 因子作为 bicgstab 的预条件子输入。

L = ichol(A);
x = bicgstab(A,b,1e-4,100,L');


bicgstab converged at iteration 30.5 to a solution with relative residual 5.3e-05.

        使用预条件子可以充分改进问题的数值属性,使 bicgstab 能够收敛。

使用指定了预条件子的 bicgstab

        检查使用指定了预条件子矩阵的 bicgstab 来求解线性系统的效果。

        加载 west0479,它是一个非对称的 479×479 实稀疏矩阵。

load west0479
A = west0479;

        定义 b 以使 Ax=b 的实际解是全为 1 的向量。

b = sum(A,2);

设置容差和最大迭代次数。

tol = 1e-12;
maxit = 20;

使用 bicgstab 根据请求的容差和迭代次数求解。指定五个输出以返回有关求解过程的信息:

  • x 是计算 A*x = b 所得的解。

  • fl0 是指示算法是否收敛的标志。

  • rr0 是计算的解 x 的相对残差。

  • it0 是计算 x 时所用的迭代次数。

  • rv0 是 ‖b−Ax‖ 的残差历史记录组成的向量。

[x,fl0,rr0,it0,rv0] = bicgstab(A,b,tol,maxit); 
fl0
fl0 = 1
rr0
rr0 = 1
it0
it0 = 0

        bicgstab 未在请求的 20 次迭代内收敛至请求的容差 1e-12,因此 fl0 为 1。实际上,bicgstab 的行为太差,因此初始估计值 x0 = zeros(size(A,2),1) 是最佳解,并会返回最佳解(如 it0 = 0 所示)。

        为了有助于缓慢收敛,可以指定预条件子矩阵。由于 A 是非对称的,请使用 ilu 生成预条件子 M=L U。指定调降容差,以忽略值小于 1e-6 的非对角线元。通过指定 L 和 U 作为 bicgstab 的输入,求解预条件方程组 A M^−1 M x=b。

setup = struct('type','ilutp','droptol',1e-6);
[L,U] = ilu(A,setup);
[x1,fl1,rr1,it1,rv1] = bicgstab(A,b,tol,maxit,L,U);
fl1
fl1 = 0
rr1
rr1 = 3.8661e-14
it1
it1 = 3

        在第三次迭代中,使用 ilu 预条件子产生的相对残差小于规定的容差 1e-12。输出 rv1(1) 为 norm(b),输出 rv1(end) 为 norm(b-A*x1)。

        可以通过绘制每次迭代的相对残差来跟踪 bicgstab 的进度。绘制每个解的残差历史记录图,并添加一条表示指定容差的线。

semilogy(0:length(rv0)-1,rv0/norm(b),'-o')
hold on
semilogy(0:length(rv1)-1,rv1/norm(b),'-o')
yline(tol,'r--');
legend('No preconditioner','ILU preconditioner','Tolerance','Location','East')
xlabel('Iteration number')
ylabel('Relative residual')

如图所示:

提供初始估计值

        检查向 bicgstab 提供解的初始估计值的效果。

        创建一个三对角稀疏矩阵。使用每行的总和作为 Ax=b 右侧的向量,使 x 的预期解是由 1 组成的向量。

n = 900;
e = ones(n,1);
A = spdiags([e 2*e e],-1:1,n,n);
b = sum(A,2);

        使用 bicgstab 求解 Ax=b 两次:一次是使用默认的初始估计值,一次是使用解的良好初始估计值。对两次求解均使用 50 次迭代和默认容差。将第二种求解中的初始估计值指定为所有元素都等于 0.99 的向量。

maxit = 50;
x1 = bicgstab(A,b,[],maxit);
bicgstab converged at iteration 20.5 to a solution with relative residual 9.3e-07.
x0 = 0.99*e;
x2 = bicgstab(A,b,[],maxit,[],[],x0);
bicgstab converged at iteration 4 to a solution with relative residual 8.7e-07.

        在这种情况下,提供初始估计值可以使 bicgstab 更快地收敛。

返回中间结果

        还可以通过在 for 循环中调用 bicgstab 来使用初始估计值获得中间结果。每次调用求解器都会执行几次迭代,并存储计算出的解。然后,将该解用作下一批迭代的初始向量。

        例如,以下代码会循环执行四次,每次执行 100 次迭代,并在 for 循环中每通过一次后均存储解向量:

x0 = zeros(size(A,2),1);
tol = 1e-8;
maxit = 100;
for k = 1:4
    [x,flag,relres] = bicgstab(A,b,tol,maxit,[],[],x0);
    X(:,k) = x;
    R(k) = relres;
    x0 = x;
end

        X(:,k) 是在 for 循环的第 k 次迭代时计算的解向量,R(k) 是该解的相对残差。

使用函数句柄代替数值矩阵

        通过为 bicgstab 提供用来计算 A*x 的函数句柄(而非系数矩阵 A)来求解线性系统。

        gallery 生成的 Wilkinson 测试矩阵之一是 21×21 三对角矩阵。预览该矩阵。

A = gallery('wilk',21)
A = 21×21

    10     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     1     9     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     1     8     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     1     7     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     1     6     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     1     5     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     1     4     1     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     1     3     1     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     1     2     1     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     1     1     1     0     0     0     0     0     0     0     0     0     0
      ⋮

        Wilkinson 矩阵有特殊的结构,因此您可以用函数句柄来表示 A*x 运算。当 A 乘以向量时,所得向量中的大多数元素为零。结果中的非零元素对应于 A 的非零三对角元素。此外,只有主对角线具有不等于 1 的非零值。

表达式 Ax 变为:

结果向量可以写为三个向量的和:

        在 MATLAB® 中,编写一个函数来创建这些向量并将它们相加,从而给出 A*x 的值:

function y = afun(x)
y = [0; x(1:20)] + ...
    [(10:-1:0)'; (1:10)'].*x + ...
    [x(2:21); 0];
end

(该函数作为局部函数保存在示例的末尾。)

        现在,通过为 bicgstab 提供用于计算 A*x 的函数句柄,求解线性系统 Ax=b。使用容差 1e-12 和 50 次迭代。

b = ones(21,1);
tol = 1e-12;  
maxit = 50;
x1 = bicgstab(@afun,b,tol,maxit)
bicgstab converged at iteration 11.5 to a solution with relative residual 5.2e-13.
x1 = 21×1

    0.0910
    0.0899
    0.0999
    0.1109
    0.1241
    0.1443
    0.1544
    0.2383
    0.1309
    0.5000
      ⋮

        检查 afun(x1) 是否产生由 1 组成的向量。

afun(x1)
ans = 21×1

    1.0000
    1.0000
    1.0000
    1.0000
    1.0000
    1.0000
    1.0000
    1.0000
    1.0000
    1.0000
      ⋮

局部函数

function y = afun(x)
y = [0; x(1:20)] + ...
    [(10:-1:0)'; (1:10)'].*x + ...
    [x(2:21); 0];
end

双共轭梯度稳定法

        双共轭梯度稳定 (BiCGSTAB) 算法是在双共轭梯度算法的基础上开发的,该算法通过使用重新启动的 GMRES 步骤来减轻 BiCG 步骤中的不规则收敛行为,从而在 BiCG 算法基础上进行改善。

        BiCGSTAB 中的 GMRES(1) 修复步骤仅利用一阶最小残差多项式,因此当这些低阶步骤不足时,该方法可能会停滞。更高阶多项式的使用导致了其他方法的开发,如 BiCGSTABL [1]

提示

  • ​大多数迭代方法的收敛取决于系数矩阵的条件数 cond(A)。当 A 是方阵时,您可以使用 equilibrate 来改进其条件数,它本身就能使大多数迭代求解器更容易收敛。但如果您随后会对经平衡处理的矩阵 B = R*P*A*C 进行因式分解,使用 equilibrate 还可以获得质量更好的预条件子矩阵。

  • 可以使用矩阵重新排序函数(如 dissect 和 symrcm)来置换系数矩阵的行和列,并在系数矩阵被分解以生成预条件子时最小化非零值的数量。这可以减少后续求解预条件线性系统所需的内存和时间。

参考

        [1] Barrett, R., M. Berry, T.F. Chan, et al., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

        [2] van der Vorst, H.A., "BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems," SIAM J. Sci. Stat. Comput., March 1992, Vol. 13, No. 2, pp. 631–644.

  • 5
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值