MATLAB中bicg函数用法

目录

语法

说明

示例

线性系统的迭代解

使用指定了预条件子的bicg

提供初始估计值

使用函数句柄代替数值矩阵


        bicg函数的功能是求解线性系统 - 双共轭梯度法。

语法

x = bicg(A,b)
x = bicg(A,b,tol)
x = bicg(A,b,tol,maxit)
x = bicg(A,b,tol,maxit,M)
x = bicg(A,b,tol,maxit,M1,M2)
x = bicg(A,b,tol,maxit,M1,M2,x0)
[x,flag] = bicg(___)
[x,flag,relres] = bicg(___)
[x,flag,relres,iter] = bicg(___)
[x,flag,relres,iter,resvec] = bicg(___)

说明

        x = bicg(A,b) 尝试使用双共轭梯度法求解关于 x 的线性系统 A*x = b。如果尝试成功,bicg 会显示一条消息来确认收敛。如果 bicg 无法在达到最大迭代次数后收敛或出于任何原因暂停,则会显示一条包含相对残差 norm(b-A*x)/norm(b) 以及该方法停止时的迭代次数的诊断消息。

        x = bicg(A,b,tol) 指定该方法的容差。默认容差是 1e-6。

        x = bicg(A,b,tol,maxit) 指定要使用的最大迭代次数。如果 bicg 无法在 maxit 次迭代内收敛,将显示诊断消息。

        x = bicg(A,b,tol,maxit,M) 指定预条件子矩阵 M 并通过有效求解方程组 M^−1Ax=M^−1
b 来计算 x。使用预条件子矩阵可以改善问题的数值属性和计算的效率。

        x = bicg(A,b,tol,maxit,M1,M2) 指定预条件子矩阵 M 的因子,使得 M = M1*M2。

        x = bicg(A,b,tol,maxit,M1,M2,x0) 指定解向量 x 的初始估计值。默认值为由零组成的向量。

        [x,flag] = bicg(___) 返回一个标志,指示算法是否成功收敛。当 flag = 0 时,收敛成功。可以将此输出语法用于之前的任何输入参数组合。如果指定了 flag 输出,bicg 将不会显示任何诊断消息。

        [x,flag,relres] = bicg(___) 还会返回相对残差 norm(b-A*x)/norm(b)。如果 flag 为 0,则 relres <= tol。

        [x,flag,relres,iter] = bicg(___) 还会返回计算出 x 时的迭代次数 iter。

        [x,flag,relres,iter,resvec] = bicg(___) 还会在每次迭代中返回残差范数向量(包括第一个残差 norm(b-A*x0))。

示例

线性系统的迭代解

        使用采用默认设置的 bicg 求解系数矩阵为方阵的线性系统,然后在求解过程中调整使用的容差和迭代次数。

        创建密度为 50% 的随机稀疏矩阵 A。另为 Ax=b 的右侧创建随机向量 b。

rng default
A = sprand(400,400,.5);
A = A'*A;
b = rand(400,1);

        使用bicg求解 Ax=b。输出显示包括相对残差  的值。

x = bicg(A,b);

bicg stopped at iteration 20 without converging to the desired tolerance 1e-06
because the maximum number of iterations was reached.
The iterate returned (number 7) has relative residual 0.45.

        默认情况下,bicg 使用 20 次迭代和容差 1e-6,对于此矩阵,算法无法在 20 次迭代后收敛。由于残差仍然很大,这说明需要更多的迭代(或预条件子矩阵)。也可以使用更大的容差,使算法更容易收敛。

        使用容差 1e-4 和 100 次迭代再次求解方程组。

x = bicg(A,b,1e-4,100);


bicg stopped at iteration 100 without converging to the desired tolerance 0.0001
because the maximum number of iterations was reached.
The iterate returned (number 7) has relative residual 0.45.

        即使采用更宽松的容差和更多迭代,残差也并未改进多少。当迭代算法以这种方式停滞时,显然需要预条件子矩阵。

        计算 A 的不完全 Cholesky 分解,并使用 L' 因子作为 bicg 的预条件子输入。

L = ichol(A);
x = bicg(A,b,1e-4,100,L');
bicg converged at iteration 60 to a solution with relative residual 9.9e-05.

        使用预条件子可以充分改进问题的数值属性,使 bicg 能够收敛。

使用指定了预条件子的bicg

        检查使用指定了预条件子矩阵的 bicg 来求解线性系统的效果。

        加载 west0479,它是一个非对称的 479×479 实稀疏矩阵。

load west0479
A = west0479;

        定义b以使 Ax=b 的实际解是全为 1 的向量。

b = sum(A,2);

设置容差和最大迭代次数。

tol = 1e-12;
maxit = 20;

        使用 bicg 根据请求的容差和迭代次数求解。指定五个输出以返回有关求解过程的信息:

  • x 是计算 A*x = b 所得的解。

  • fl0 是指示算法是否收敛的标志。

  • rr0 是计算的解 x 的相对残差。

  • it0 是计算 x 时所用的迭代次数。

  • rv0 是 ‖b−Ax‖ 的残差历史记录组成的向量。

[x,fl0,rr0,it0,rv0] = bicg(A,b,tol,maxit);
fl0
fl0 = 1
rr0
rr0 = 1
it0
it0 = 0

        bicg 未在请求的 20 次迭代内收敛至请求的容差 1e-12,因此 fl0 为 1。实际上,bicg 的行为太差,因此初始估计值 x0 = zeros(size(A,2),1) 是最佳解,并会返回最佳解(如 it0 = 0 所示)。

        为了有助于缓慢收敛,您可以指定预条件子矩阵。由于 A 是非对称的,请使用 ilu 生成预条件子 M=L U。指定调降容差,以忽略值小于 1e-6 的非对角线元。通过指定 L 和 U 作为 bicg 的输入,求解预条件方程组 M^−1 A x=M^−1 b。

setup = struct('type','ilutp','droptol',1e-6);
[L,U] = ilu(A,setup);
[x1,fl1,rr1,it1,rv1] = bicg(A,b,tol,maxit,L,U);
fl1
fl1 = 0
rr1
rr1 = 4.1374e-14
it1
it1 = 6

        在第六次迭代中,使用 ilu 预条件子产生的相对残差小于规定的容差 1e-12。输出 rv1(1) 为 norm(b),输出 rv1(end) 为 norm(b-A*x1)。

        可以通过绘制每次迭代的相对残差来跟踪 bicg 的进度。绘制每个解的残差历史记录图,并添加一条表示指定容差的线。

semilogy(0:length(rv0)-1,rv0/norm(b),'-o')
hold on
semilogy(0:length(rv1)-1,rv1/norm(b),'-o')
yline(tol,'r--');
legend('No preconditioner','ILU preconditioner','Tolerance','Location','East')
xlabel('Iteration number')
ylabel('Relative residual')

如图所示:

提供初始估计值

        检查向 bicg 提供解的初始估计值的效果。

        创建一个三对角稀疏矩阵。使用每行的总和作为 Ax=b 右侧的向量,使 x 的预期解是由 1 组成的向量。

n = 900;
e = ones(n,1);
A = spdiags([e 2*e e],-1:1,n,n);
b = sum(A,2);

        使用 bicg 求解 Ax=b 两次:一次是使用默认的初始估计值,一次是使用解的良好初始估计值。对两次求解均使用 200 次迭代和默认容差。将第二种求解中的初始估计值指定为所有元素都等于 0.99 的向量。

maxit = 200;
x1 = bicg(A,b,[],maxit);
bicg converged at iteration 35 to a solution with relative residual 9.5e-07.
x0 = 0.99*e;
x2 = bicg(A,b,[],maxit,[],[],x0);
bicg converged at iteration 7 to a solution with relative residual 8.7e-07.

        在这种情况下,提供初始估计值可以使bicg更快地收敛。

返回中间结果

        还可以通过在 for 循环中调用bicg来使用初始估计值获得中间结果。每次调用求解器都会执行几次迭代,并存储计算出的解。然后,将该解用作下一批迭代的初始向量。

        例如,以下代码会循环执行四次,每次执行 100 次迭代,并在 for 循环中每通过一次后均存储解向量:

x0 = zeros(size(A,2),1);
tol = 1e-8;
maxit = 100;
for k = 1:4
    [x,flag,relres] = bicg(A,b,tol,maxit,[],[],x0);
    X(:,k) = x;
    R(k) = relres;
    x0 = x;
end

        X(:,k) 是在 for 循环的第 k 次迭代时计算的解向量,R(k) 是该解的相对残差。

使用函数句柄代替数值矩阵

        通过为 bicg 提供用来计算 A*x 和 A'*x 的函数句柄(而非系数矩阵 A)来求解线性系统。

        创建一个非对称三对角矩阵。预览该矩阵。

A = gallery('wilk',21) + diag(ones(20,1),1)
A = 21×21

    10     2     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     1     9     2     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     1     8     2     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     1     7     2     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     1     6     2     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     1     5     2     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     1     4     2     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     1     3     2     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     1     2     2     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     1     1     2     0     0     0     0     0     0     0     0     0     0
      ⋮

        由于此三对角矩阵有特殊的结构,您可以用函数句柄来表示 A*x 运算。当 A 乘以向量时,所得向量中的大多数元素为零。结果中的非零元素对应于 A 的非零三对角元素。

        表达式 A x 变为:

        结果向量可以写为三个向量的和:

同样,A^T x 的表达式变为:

        在 MATLAB® 中,编写一个函数来创建这些向量并将它们相加,根据标志输入给出 A*x 或 A'*x 的值:

function y = afun(x,flag)
if strcmp(flag,'notransp') % Compute A*x
    y = [0; x(1:20)] ...
        + [(10:-1:0)'; (1:10)'].*x ...
        + 2*[x(2:end); 0];
elseif strcmp(flag,'transp') % Compute A'*x
    y = 2*[0; x(1:20)] ...
        + [(10:-1:0)'; (1:10)'].*x ...
        + [x(2:end); 0];
end
end

(该函数作为局部函数保存在示例的末尾。)

        现在,通过为 bicg 提供用于计算 A*x 和 A'*x 的函数句柄,求解线性系统 Ax=b。使用容差 1e-6 和 25 次迭代。指定 b 为 A 的行总和,使得 x 的实际解是由 1 组成的向量。

b = full(sum(A,2));
tol = 1e-6;  
maxit = 25;
x1 = bicg(@afun,b,tol,maxit)
bicg converged at iteration 19 to a solution with relative residual 4.8e-07.
x1 = 21×1

    1.0000
    1.0000
    1.0000
    1.0000
    1.0000
    1.0000
    1.0000
    1.0000
    1.0000
    1.0000
      ⋮

局部函数

function y = afun(x,flag)
if strcmp(flag,'notransp') % Compute A*x
    y = [0; x(1:20)] ...
        + [(10:-1:0)'; (1:10)'].*x ...
        + 2*[x(2:end); 0];
elseif strcmp(flag,'transp') % Compute A'*x
    y = 2*[0; x(1:20)] ...
        + [(10:-1:0)'; (1:10)'].*x ...
        + [x(2:end); 0];
end
end

双共轭梯度法

​        开发双共轭梯度 (BiCG) 算法是为了将共轭梯度 (CG) 法推广到非对称方程组。BiCG 不仅可求解原始线性系统 Ax=b,还可求解共轭方程组 ATx∗=b∗。这会导致根据系数矩阵的转置定义的两组共轭残差。

        对于 CG 算法所针对的对称正定方程组,BiCG 算法可提供相同的结果,但每次迭代的成本会增加一倍。BiCG 的准确度可与 GMRES 相比,但在两者之间,只有 GMRES 才能真正将残差降至最低。为了解决 BiCG 算法所展现的不规则收敛行为,我们开发了 BiCG 算法的几种变体(请参阅 BiCGSTAB、BiCGSTABL 和 CGS)[1]。

​提示

  • ​大多数迭代方法的收敛取决于系数矩阵的条件数 cond(A)。当 A 是方阵时,可以使用 equilibrate 来改进其条件数,它本身就能使大多数迭代求解器更容易收敛。但如果随后会对经平衡处理的矩阵 B = R*P*A*C 进行因式分解,使用 equilibrate 还可以获得质量更好的预条件子矩阵。

  • 可以使用矩阵重新排序函数(如 dissect 和 symrcm)来置换系数矩阵的行和列,并在系数矩阵被分解以生成预条件子时最小化非零值的数量。这可以减少后续求解预条件线性系统所需的内存和时间。

参考

        [1] Barrett, R., M. Berry, T.F. Chan, et al., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

  • 17
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值