医学图像分割论文:FocusNet: Imbalanced Large and Small Organ Segmentation with an e2e DNN for Head CT

FocusNet是一种端到端的深度神经网络,针对医学图像中头颈CT的器官分割,特别是解决大、小器官类别不平衡的问题。该网络包括主分割网络S-Net、小器官定位网络SOL-Net和小器官分割网络SOS-Net。S-Net使用改进的3D Unet结构,避免信息丢失。SOL-Net生成小器官中心位置的热力图,SOS-Net借助ROI-pooling进行分割,缓解标签不平衡。损失函数结合dice和focal损失,提高分割效果。
摘要由CSDN通过智能技术生成

医学图像分割论文:FocusNet: Imbalanced Large and Small Organ Segmentation with an End-to-End Deep Neural Network for Head and Neck CT Images

Auther: Yunhe Gao, Institution: SenseTime Research, Publish year: 2019
论文地址:https://arxiv.org/abs/1907.12056v1

Key point:

提出了一种e2e医学图像分割框架,用于头颈部CT的危及器官(OAR)勾画,用于解决不同器官类别不平衡的问题
可以实现自动定位,ROI-pooling,小器官分割子网络,一次实现对大器官和小器官的分割

method:

在这里插入图片描述

Fig1 Focus-net

  1. 主分割网络:S-Net
    3D-Unet在OAR分割中表现较差的原因,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值