OpenCV 图形API(32)图像滤波----二维卷积滤波器函数filter2D()

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

使用核对图像进行卷积操作。
该函数将任意线性滤波器应用于图像。当孔径部分位于图像外部时,根据指定的边界模式,函数会对外部像素值进行插值。
实际上,该函数计算的是相关性而非卷积:
dst ( x , y ) = ∑ 0 ≤ x ′ < kernel.cols 0 ≤ y ′ < kernel.rows kernel ( x ′ , y ′ ) ∗ src ( x + x ′ − anchor.x , y + y ′ − anchor.y ) \texttt{dst} (x,y) = \sum _{ \substack{0\leq x' < \texttt{kernel.cols}\\{0\leq y' < \texttt{kernel.rows}}}} \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} ) dst(x,y)=0x<kernel.cols0y<kernel.rowskernel(x,y)src(x+xanchor.x,y+yanchor.y)
也就是说,核不会围绕锚点进行镜像。如果你需要真正的卷积,请使用 flip 函数翻转核,并将新的锚点设置为 (kernel.cols - anchor.x - 1, kernel.rows - anchor.y - 1)。

支持的矩阵数据类型有 CV_8UC1、CV_8UC3、CV_16UC1、CV_16SC1 和 CV_32FC1。输出图像必须与输入图像具有相同的大小和通道数。

cv::gapi::filter2D 是 OpenCV 的 G-API 模块中的一个函数,用于对图像应用二维卷积滤波器。这个函数可以用来执行各种图像处理任务,比如模糊、锐化或边缘检测等。

注意:
如果硬件支持,则会进行向最近偶数的舍入;如果不支持,则向最近的整数舍入。
函数的文本ID为 “org.opencv.imgproc.filters.filter2D”。

函数原型

GMat cv::gapi::filter2D 	
( 	
	const GMat &  	src,
	int  	ddepth,
	const Mat &  	kernel,
	const Point &  	anchor = Point(-1,-1),
	const Scalar &  	delta = Scalar(0),
	int  	borderType = BORDER_DEFAULT,
	const Scalar &  	borderValue = Scalar(0) 
) 		

参数

  • 参数 src: 输入图像。
  • 参数 ddepth: 目标图像的期望深度。
  • 参数 kernel: 卷积核(或更准确地说是相关核),一个单通道浮点矩阵;如果你想对不同通道应用不同的核,请使用 split 将图像分割成单独的颜色平面并分别处理它们。
  • 参数anchor: 核的锚点,指示过滤点在核内的相对位置;锚点应位于核内;默认值 (-1,-1) 表示锚点位于核中心。
  • 参数 delta: 可选值,在存储到目标图像之前添加到过滤后的像素。
  • 参数borderType: 像素外推方法,参见 cv::BorderTypes。
  • 参数 borderValue: 在使用常量边界情况下边界的值。

代码示例

#include <opencv2/gapi.hpp>
#include <opencv2/gapi/core.hpp>  // 确保包含核心操作头文件
#include <opencv2/opencv.hpp>

int main()
{
    // 加载图像
    cv::Mat src = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/Lenna.png", cv::IMREAD_COLOR );
    if ( src.empty() )
    {
        std::cerr << "无法加载图像" << std::endl;
        return -1;
    }

    // 定义卷积核
    cv::Mat kernel = ( cv::Mat_< float >( 3, 3 ) << 0, -1, 0, -1, 5, -1, 0, -1, 0 );  // 这是一个简单的锐化滤波器

    // 创建GAPI图:定义输入输出
    cv::GMat in;
    auto filtered = cv::gapi::filter2D( in, -1, kernel );

    // 创建GComputation对象
    cv::GComputation comp( cv::GIn( in ), cv::GOut( filtered ) );

    // 应用到输入图像上
    cv::Mat out;
    comp.apply( src, out );

    // 显示结果
    cv::imshow( "Original Image", src );
    cv::imshow( "Filtered Image", out );
    cv::waitKey();

    return 0;
}

运行结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

村北头的码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值