- 操作系统:ubuntu22.04
- OpenCV版本:OpenCV4.9
- IDE:Visual Studio Code
- 编程语言:C++11
算法描述
使用核对图像进行卷积操作。
该函数将任意线性滤波器应用于图像。当孔径部分位于图像外部时,根据指定的边界模式,函数会对外部像素值进行插值。
实际上,该函数计算的是相关性而非卷积:
dst
(
x
,
y
)
=
∑
0
≤
x
′
<
kernel.cols
0
≤
y
′
<
kernel.rows
kernel
(
x
′
,
y
′
)
∗
src
(
x
+
x
′
−
anchor.x
,
y
+
y
′
−
anchor.y
)
\texttt{dst} (x,y) = \sum _{ \substack{0\leq x' < \texttt{kernel.cols}\\{0\leq y' < \texttt{kernel.rows}}}} \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )
dst(x,y)=0≤x′<kernel.cols0≤y′<kernel.rows∑kernel(x′,y′)∗src(x+x′−anchor.x,y+y′−anchor.y)
也就是说,核不会围绕锚点进行镜像。如果你需要真正的卷积,请使用 flip 函数翻转核,并将新的锚点设置为 (kernel.cols - anchor.x - 1, kernel.rows - anchor.y - 1)。
支持的矩阵数据类型有 CV_8UC1、CV_8UC3、CV_16UC1、CV_16SC1 和 CV_32FC1。输出图像必须与输入图像具有相同的大小和通道数。
cv::gapi::filter2D 是 OpenCV 的 G-API 模块中的一个函数,用于对图像应用二维卷积滤波器。这个函数可以用来执行各种图像处理任务,比如模糊、锐化或边缘检测等。
注意:
如果硬件支持,则会进行向最近偶数的舍入;如果不支持,则向最近的整数舍入。
函数的文本ID为 “org.opencv.imgproc.filters.filter2D”。
函数原型
GMat cv::gapi::filter2D
(
const GMat & src,
int ddepth,
const Mat & kernel,
const Point & anchor = Point(-1,-1),
const Scalar & delta = Scalar(0),
int borderType = BORDER_DEFAULT,
const Scalar & borderValue = Scalar(0)
)
参数
- 参数 src: 输入图像。
- 参数 ddepth: 目标图像的期望深度。
- 参数 kernel: 卷积核(或更准确地说是相关核),一个单通道浮点矩阵;如果你想对不同通道应用不同的核,请使用 split 将图像分割成单独的颜色平面并分别处理它们。
- 参数anchor: 核的锚点,指示过滤点在核内的相对位置;锚点应位于核内;默认值 (-1,-1) 表示锚点位于核中心。
- 参数 delta: 可选值,在存储到目标图像之前添加到过滤后的像素。
- 参数borderType: 像素外推方法,参见 cv::BorderTypes。
- 参数 borderValue: 在使用常量边界情况下边界的值。
代码示例
#include <opencv2/gapi.hpp>
#include <opencv2/gapi/core.hpp> // 确保包含核心操作头文件
#include <opencv2/opencv.hpp>
int main()
{
// 加载图像
cv::Mat src = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/Lenna.png", cv::IMREAD_COLOR );
if ( src.empty() )
{
std::cerr << "无法加载图像" << std::endl;
return -1;
}
// 定义卷积核
cv::Mat kernel = ( cv::Mat_< float >( 3, 3 ) << 0, -1, 0, -1, 5, -1, 0, -1, 0 ); // 这是一个简单的锐化滤波器
// 创建GAPI图:定义输入输出
cv::GMat in;
auto filtered = cv::gapi::filter2D( in, -1, kernel );
// 创建GComputation对象
cv::GComputation comp( cv::GIn( in ), cv::GOut( filtered ) );
// 应用到输入图像上
cv::Mat out;
comp.apply( src, out );
// 显示结果
cv::imshow( "Original Image", src );
cv::imshow( "Filtered Image", out );
cv::waitKey();
return 0;
}