OpenCV 中用于支持 华为昇腾(Ascend)AI 芯片后端 的模块CANN

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

cannops 是 OpenCV 中用于支持 华为昇腾(Ascend)AI 芯片后端 的模块,全称为 CANN Operations (CANN Operators)。它属于 OpenCV 扩展模块的一部分,主要用于在 华为 Atlas 加速卡、Ascend NPU(神经网络处理单元)等设备上加速计算机视觉和深度学习推理任务。

什么是 cannops?

  • cannops 是一个内部命名空间,定义了与 Ascend 后端相关的算子(operations),这些算子可以被 OpenCV DNN 模块或其他模块调用,以利用 Ascend NPU 进行高效计算。
  • 它实现了很多常见的图像处理和神经网络操作的硬件加速版本。
  • 主要用于提升 OpenCV 在 Ascend 平台上的性能,尤其是在运行深度学习模型时。

常见功能

  • 图像预处理加速 支持快速缩放、归一化、颜色空间转换等
  • 算术运算 如加法、减法、乘法、除法等
  • 深度学习推理 支持 ONNX、TensorFlow、Caffe 等模型在 Ascend 上推理
  • 内存优化 支持 Ascend 设备内存(NPU内存)分配和管理
  • 异步执行 支持通过 AscendStream 实现异步计算

相关头文件和命名空间

头文件:

#include <opencv2/cann/cann.hpp>        // 核心 Ascend 支持
#include <opencv2/cann/cann_ops.hpp>    // cannops 算子接口

命名空间:

namespace cv::cann {
    ...
}

代码示例

以下是一个使用 OpenCV DNN 模块加载模型,并在 Ascend 后端运行的简单示例:

#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>

int main()
{
    // 加载 ONNX 模型
    cv::dnn::Net net = cv::dnn::readNetFromONNX("model.onnx");

    // 设置为使用 Ascend 后端(CANN)
    net.setPreferableBackend(cv::dnn::DNN_BACKEND_OPENCV);
    net.setPreferableTarget(cv::dnn::DNN_TARGET_NPU);

    // 构造输入 Blob
    cv::Mat inputBlob = cv::dnn::blobFromImage(cv::Mat::zeros(224, 224, CV_8UC3), 1.0, cv::Size(224, 224), cv::Scalar(), true, false);

    // 输入到网络
    net.setInput(inputBlob);

    // 前向推理
    cv::Mat output = net.forward();

    std::cout << "Output size: " << output.size << std::endl;

    return 0;
}

我的电脑没有华为昇腾的已经,无法展示运行结果了

在这个例子中:

  • net.setPreferableTarget(cv::dnn::DNN_TARGET_NPU); 表示使用 Ascend NPU 后端进行推理。
  • OpenCV 内部会自动调用 cannops 模块实现的算子来加速模型推理过程。

配置环境

要使用 cannops 和 Ascend 后端,你需要满足以下条件:

组件要求
硬件平台华为 Atlas 加速卡(如 Atlas 300I、Atlas 300P、Atlas 800)
操作系统Ubuntu 18.04 / 20.04 或 CentOS 7/8
Ascend CANN 版本≥ 5.0.RC1
OpenCV 版本≥ 4.5.0(并启用 contrib 模块和 ASCEND/NPU 支持)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

村北头的码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值