OpenCV CUDA模块图像过滤------用于创建一个最小值盒式滤波器(Minimum Box Filter)函数createBoxMinFilter()

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

该函数创建的是一个 最小值滤波器(Minimum Filter),它对图像中每个像素邻域内的像素值取最小值。常用于:

  • 去除亮噪声(light noise)
  • 提取局部最小值区域
  • 腐蚀操作的替代方法之一

与 cv::cuda::createBoxMaxFilter 类似,但它是取邻域内像素的最小值。

参数

参数名类型描述
srcTypeint输入图像的数据类型。目前仅支持:CV_8UC1、CV_8UC4。
ksizecv::Size卷积核大小(宽 x 高),例如 cv::Size(3, 3)。建议使用奇数尺寸以保证锚点居中。
anchorcv::Point锚点位置,默认为 (-1, -1) 表示中心点。
borderModeint边界填充方式,常用值:cv::BORDER_DEFAULT, cv::BORDER_CONSTANT, cv::BORDER_REPLICATE 等。
borderValcv::Scalar如果 borderMode == BORDER_CONSTANT,则用该值填充边界,默认为黑色(全零)。

返回值

  • 返回一个指向 cv::cuda::Filter 的智能指针 cv::Ptrcv::cuda::Filter。
  • 可通过调用其 .apply() 方法来执行滤波操作。

代码示例

#include <opencv2/cudaimgproc.hpp>
#include <opencv2/opencv.hpp>
#include <opencv2/cudafilters.hpp>

int main()
{
    // 读取图像(灰度图)
    cv::Mat h_img = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/Lenna.png", cv::IMREAD_GRAYSCALE );
    if ( h_img.empty() )
    {
        std::cerr << "Error: Image not found!" << std::endl;
        return -1;
    }

    // 上传到 GPU
    cv::cuda::GpuMat d_src, d_dst;
    d_src.upload( h_img );

    // 创建 Min Box Filter
    cv::Ptr< cv::cuda::Filter > minFilter = cv::cuda::createBoxMinFilter( d_src.type(),         // 输入图像类型(必须是 CV_8UC1 或 CV_8UC4)
                                                                          cv::Size( 5, 5 ),     // 卷积核大小
                                                                          cv::Point( -1, -1 ),  // 锚点默认为中心
                                                                          cv::BORDER_DEFAULT    // 默认边界处理
    );

    // 应用滤波器
    minFilter->apply( d_src, d_dst );

    // 下载结果回 CPU
    cv::Mat h_dst;
    d_dst.download( h_dst );

    // 显示结果
    cv::imshow( "Original", h_img );
    cv::imshow( "Min Filtered", h_dst );
    cv::waitKey( 0 );

    return 0;
}

运行结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

村北头的码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值