机器学习: Metric Learning (度量学习)

本文介绍了度量学习在人脸识别中的应用,包括其由来、工作原理及优势。度量学习能根据任务自主学习度量距离函数,适用于无需固定类别数的场景,如门禁系统。文章对比了度量学习与经典识别网络的区别,强调了前者在适应性和灵活性方面的优势。

Introduction

度量学习 (Metric Learning) == 距离度量学习 (Distance Metric Learning,DML) == 相似度学习

这里写图片描述

  • 是人脸识别中常用传统机器学习方法,由Eric Xing在NIPS 2002提出。
  • 分为两种,一种是基于监督学习的,另外一种是基于非监督学习的。

Method

根据不同的任务来自主学习出针对某个特定任务的度量距离函数。通过计算两张图片之间的相似度,使得输入图片被归入到相似度大的图片类别中去。

这里写图片描述

与经典识别网络相比

经典识别网络有一个bug:必须提前设定好类别数
这也就意味着,每增加一个新种类,就要重新定义网络模型,并从头训练一遍。

比如我们要做一个门禁系统,每增加或减少一个员工(等于是一个新类别),就要修改识别网络并重新训练。很明显,这种做法在某些实际运用中很不科学。

因此,Metric Learning作为经典识别网络的替代方案,可以很好地适应某些特定的图像识别场景。一种较好的做法,是丢弃经典神经网络最后的softmax层,改成直接输出一根feature vector,去特征库里面按照Metric Learning寻找最近邻的类别作为匹配项。

这里写图片描述

目前,Metric Learning已被广泛运用于人脸识别的日常运用中。


[1] Wikipedia-距离函数
[2] DistLearnKit
[3] 基于深度学习的Person Re-ID(度量学习)
[4] 度量学习
[5] 度量学习(Distance Metric Learning)介绍

评论 4
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值