论文阅读: R-FCN-3000

Introduction

R-FCN-3000的定位是 large-scale detector

large-scale detector核心技术精度意义
YOLO-9000语法树较差第一个large-scale detector
R-FCN-3000解耦“定位”和“分类”较好第一个可实用的large-scale detector

分类

采用了YOLO-9000中的分类思想:

大类得分 × 细类得分 = 最终分类得分

定位回归

将“定位”和“分类”解耦,避免了R-FCN中对每个类都进行一次bbox回归:
这里写图片描述

设计了双pipeline结构如下:
这里写图片描述

Innovation

经过一系列实验,发现:

  • “按类进行回归”是没有必要的,去掉之后甚至可以获得一个更合理的object得分;
  • 因为很多object类之间的外观高度相似,共享“定位卷积计算”是可行的。

Result

R-FCN-3000效果图如下:
这里写图片描述

Thinking

这篇文章我只是略读。觉得作者洞察得很仔细,设计的网络结构也较简单,而且最终的检测精度和检测速度都不错。


[1] R-FCN-3000 at 30fps: Decoupling Detection and Classification

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值