最优化之粒子群优化(PSO)笔记

文章讨论了使用遗传算法和模拟退火思想解决优化问题的过程,通过粒子群体的迭代更新寻找全局最优解或接近最优解,强调了避免局部最优的方法如随机干扰和动态调整参数。
摘要由CSDN通过智能技术生成

类似挖宝,一个人去挖宝,挖到了,告诉其他人也来这里挖,并且他们也可以有自己的想法,最终一起合作去挖出最好的宝贝。

(2,3)也可以有自己的想法,比如rand=0.2移动一段距离再继续。

全局的坐标减去当前的坐标,得到的就是要的α(接下来要走的)

有三项,第一项就表示(现在的速度)惯性。Pij表示的就是个体极值,减去xij就代表的是往他个体极值飞的大小与方向。c2也是系数,pgj说明的就是第t代全局的最优位置在哪,整个就是表示他往全局飞的大小和方向。r1,r2为0-1的随机数.w(惯性权重),c1(个体的学习系数),c2(全局学习系数)才为系数。整个合起来就是影响下一代的飞行方向。

然后当前这一代飞向下一代就变成下一代的位置了

不能飞的太快,所以有0.1-2的Vmax

Step1:挑一些点送上去

Step2:就越是下面的注释1,如果想要一个最大化的函数值(maxf),就是反过来的最小化的-f

Step3:

        其实就是这里他的大小跟方向

比如迭代20次之后,可能会陷入一个局部极小值

就是先让w大一点,保证独立的飞行状态,往远处飞一点,

缺点就是容易收敛到局部最优,我们可以怎么办呢?比如迭代到了800代,大多数粒子都收敛到了一个地方了,这个时候怎么办呢,可以给他加一个随机的干扰。变一个位置,可能刚好就会跳出这个局部最优。

还可以让我们前期搜索空间大一些,后期再慢慢压缩。

遗传算法有交叉变异,比如一个点有局部最优,可能突然就跳跃到另一个地方了,可能那个点就比哪个局部最优的好了。

模拟退火的思路就是比如上面的C‘点可能不好,但是我可以拿一定的概率接受你,虽然C’不好,但是他的旁边可能就是好的。

所有的思路就是充分的让粒子布满每一个空间去搜一遍,跳出局部最优。

基于该逻辑有最大的可能性找到最优解,或是能最接近最优解,或是能最快找到相对最优解

 这里其实先介绍一下背景更好,主要是有这么几个要素

1.最优解没办法直接解出来,只能通过尝试法去碰运气

2.当前计算机的算力,没办法做到把所有可能情况全部遍历一遍,只能遍历部分

代码来自哔哩哔哩——青青草原灰太郎

(matlab)

%% 初始化种群  
clear
%% Sphere
clear
f= @(x) x .* sin(x) .* cos(2 * x) - 2 * x .* sin(3 * x) +3 * x .* sin(4 * x); % 函数表达式    % 求这个函数的最大值  


N = 20;                         % 初始种群个数  
d = 1;                          % 可行解维数  
ger = 100;                      % 最大迭代次数       
limit = [0, 50];               % 设置位置参数限制  
vlimit = [-10, 10];               % 设置速度限制  
w = 0.8;                        % 惯性权重  
c1 = 0.5;                       % 自我学习因子  
c2 = 0.5;                       % 群体学习因子   
figure(1);ezplot(f,[0,0.01,limit(2)]);   %曲线

x = limit(1) + (  limit( 2 ) -  limit( 1)  ) .* rand(N, d);%初始种群的位置  

v = rand(N, d);                  % 初始种群的速度  
xm = x;                          % 每个个体的历史最佳位置  
ym = zeros(1, d);                % 种群的历史最佳位置  
fxm = ones(N, 1)*inf;               % 每个个体的历史最佳适应度  
fym = inf;                       % 种群历史最佳适应度  
hold on  
plot(xm, f(xm), 'ro');title('初始状态图');  
figure(2)  
%% 群体更新  
iter = 1;  
% record = zeros(ger, 1);          % 记录器  
while iter <= ger  
     fx = f(x) ; % 个体当前适应度     
     for i = 1:N        
        if fx(i)  <fxm(i) 
            fxm(i) = fx(i);     % 更新个体历史最佳适应度  
            xm(i,:) = x(i,:);   % 更新个体历史最佳位置(取值)  
        end   
     end  
    if  min(fxm)  < fym 
        [fym, nmin] = min(fxm);   % 更新群体历史最佳适应度  
        ym = xm(nmin, :);      % 更新群体历史最佳位置  
    end  
    v = v * w + c1 * rand * (xm - x) + c2 * rand * (repmat(ym, N, 1) - x);% 速度更新  
    % 边界速度处理  
    v(v > vlimit(2)) = vlimit(2);  
    v(v < vlimit(1)) = vlimit(1);  
    x = x + v;% 位置更新  
    % 边界位置处理  
    x(x > limit(2)) = limit(2);  
    x(x < limit(1)) = limit(1);  
    record(iter) = fym;%最大值记录  
    x0 = 0 : 0.01 : limit(2);  
    subplot(1,2,1)
    plot(x0, f(x0), 'b-', x, f(x), 'ro');title('状态位置变化')
    subplot(1,2,2);plot(record);title('最优适应度进化过程')  
    pause(0.01)  
    iter = iter+1;  

end  

x0 = 0 : 0.01 : limit(2);  
figure(4);plot(x0, f(x0), 'b-', x, f(x), 'ro');title('最终状态位置')  
disp(['最大值:',num2str(fym)]);  
disp(['变量取值:',num2str(ym)]);  

N就是多少个粒子去同时去搜

d=1,这里可以不这么去写,可以改一下,然后下面就都改了

ger=100,就是我们要搜寻100次

limit = [0, 50]把空间设置为0-50

vlimit = [-10, 10]速度就是一次他能飞多少,一次能飞10个单位

w = 0.8;   

c1 = 0.5;                
c2 = 0.5; 

这几个都可以自己改

x = limit(1) + (  limit( 2 ) -  limit( 1)  ) .* rand(N, d);%初始种群的位置  

rand(N, d):根据上面的参数就是生成20行1列,就是有20个元素

xm = x;                          记录每个个体的历史最佳位置  
ym = zeros(1, d);                记录种群的历史最佳位置  
fxm = ones(N, 1)*inf;             记录每个个体的历史最佳适应度  
fym = inf;                     记录种群历史最佳适应度  

下面是对我们函数进行循环

%% 群体更新  
iter = 1;  
% record = zeros(ger, 1);          % 记录器  
while iter <= ger  
     fx = f(x) ; % 个体当前适应度     其实就是函数值
     for i = 1:N       判断当前位置最好的一个适应度 
        if fx(i)  <fxm(i) 
            fxm(i) = fx(i);     % 更新个体历史最佳适应度  
            xm(i,:) = x(i,:);   % 更新个体历史最佳位置(取值)  
        end   

     end  
    if  min(fxm)  < fym 再看看第一代比之前的50个粒子,这50个里面最好的那一个比上一次50个最好的那一个好不好,好的话就更新
        [fym, nmin] = min(fxm);   % 更新群体历史最佳适应度  
        ym = xm(nmin, :);      % 更新群体历史最佳位置  
    end  

    v = v * w + c1 * rand * (xm - x) + c2 * rand * (repmat(ym, N, 1) - x);% 速度更新  
    % 边界速度处理  
    v(v > vlimit(2)) = vlimit(2);  
    v(v < vlimit(1)) = vlimit(1);  
    x = x + v;% 位置更新  


    % 边界位置处理  
    x(x > limit(2)) = limit(2);  
    x(x < limit(1)) = limit(1);  


    record(iter) = fym;%最大值记录  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值