2024年数学真题 | 管理类联考

日期内容
2024.9.10新建完成
2024.10.1计划复习错题

2024年真题分析

板块题量章节题号
算数2题目算数17.带余除法、20.两绝对值之查
代数8题目代数式21.乘法公式+不等式推导
方程不等式04.均值定理、15.不等式计算、19不等式性质
数列03.等差数列求和、06.等差数列、10.等差数列求和、25.等比数列片段和
几何7题平面几何08.阴影图形、11.三角形内接半圆
立体几何13、柱体,球体积
解析几何05.平行四边形点坐标关系、18.直线与抛物线、23.两变量不等关系数形结合、24.曲线与坐标轴交点
数据分析4题排列组合07.隔板法
概率02.古典概型、14.古典概型、16.古典概型
应用题4题应用01.增长率+比例、09.工程-负效率、12行程-行船、22.行程-两条直线上运动

一、问题求解:1~15小题,每题3分,共45分,下列每题给出A、B、C、D、E五个选项中,只有一项符合试题要求.

[2024.01]甲股票上涨20%后价格与乙股票下跌20%后的价格相等,则甲、乙股票的原价格之比为().
A.1:1
B.1:2
C.2:1
D.3:2
E.2:3

【解析】
甲 (1+20%) = 乙 (1-20%)
甲 乙 = 0.8 1.2 = 2 3 \frac{甲}{ 乙}=\frac{0.8}{1.2} =\frac{2}{3} =1.20.8=32
答案E.
★☆☆☆☆

[2024.02]将3张写有不同数字的卡片随机排成一排,数字面朝下,翻开左边和中间的2张卡片,如果中间卡片上的数字大,那么取中间的卡片,否则取右边的卡片,则取出卡片上的数字最大的概率为().
A. 5 6 \frac{5}{6} 65
B. 2 3 \frac{2}{3} 32
C. 1 2 \frac{1}{2} 21
D. 1 3 \frac{1}{3} 31
E. 1 4 \frac{1}{4} 41

【解析】
古典概型分三步解题
第一步:计算总方法数
A 3 3 = 6 A_{3}^{3}=6 A33=6
第二部:计算满足要求的方法数
中间>左边,取中间,中间为3[132]、[231]
中间<左边,取右边,右边为3[213]
第三步:相除得概率
P=3/6=1/2
在这里插入图片描述
答案C.
★★☆☆☆
玄学技巧:红色字体“开”,以赌局性质的概率题目,答案通常为1/2.

[2024.03]甲、乙两人参加健步走运动,第1填两人走的步数相同,此后甲每一天都比前一天多走700步,乙每天走的步数保持不变,若乙前7天走的总步数与甲前6天走的总步数相同,则甲第7天走了().
A.10500步
B.13300步
C.14000步
D.14700步
E.15400步

【解析】

Day1Day2Day3Day4Day5Day6Day7
x步x+700x+1400x+2100x+2800x+3500x+4200
x步x步x步x步x步x步x步

6甲=7乙
x+(x+700)+(x+1400)+(x+2100)+(x+2800)+(x+3500)=7x
6x+10500 = 7x
x=10500,则甲第7天为10500+4200=14700
答案D.
★☆☆☆☆

[2024.04]函数 f ( x ) = x 4 + 5 x 2 + 16 x 2 的最小值 f(x)=\frac{x^4+5x^2+16}{x^2}的最小值 f(x)=x2x4+5x2+16的最小值().
A.12
B.13
C.14
D.15
E.16

【解析】
x 4 + 5 x 2 + 16 x 2 分子分母同除以 x 2 得: x 2 + 16 x 2 + 5 ≥ 2 x 2 ∗ 16 x 2 + 5 = 2 16 + 5 = 13 {\frac{x^4+5x^2+16}{x^2}}分子分母同除以x^2得:x^2+{\frac{16}{x^2}}+5≥2\sqrt{x^2*{\frac{16}{x^2}}}+5=2\sqrt{16}+5 =13 x2x4+5x2+16分子分母同除以x2得:x2+x216+52x2x216 +5=216 +5=13
答案C.
★★★☆☆
知识点:当且当 x 2 = 16 x 2 时,可以取得最小值, x 2 = 4 x^2 = \frac{16}{x^2}时,可以取得最小值,x^2=4 x2=x216时,可以取得最小值,x2=4
均值定理 a + b 2 ≥ a b 同理推出 a 2 + b 2 ≥ 2 a b 均值定理{\frac{a+b}{2}≥\sqrt{ab}}同理推出a^2+b^2≥2ab 均值定理2a+bab 同理推出a2+b22ab

[2024.05]已知点O(0,0)、A(a,1)、B(2,b)、C(1,2),若四边形OABC为平行四边形,则a+b=().
A.3
B.4
C.5
D.6
E.7

【解析】
直接画图
在这里插入图片描述
a + b = 3 + 1 = 4 a+b=3+1=4 a+b=3+1=4
答案B.
★☆☆☆☆

[2024.06]已知等差数列 a n {a_n} an满足 a 2 a 3 = a 1 a 4 + 50 , 且 a 2 + a 3 < a 1 + a 5 , 则公差为 a_2a_3=a_1a_4+50,且a_2+a_3<a_1+a_5,则公差为 a2a3=a1a4+50,a2+a3<a1+a5,则公差为().
A.2
B.-2
C.5
D.-5
E.10

【解析】
等差数列某几项和→下标和相等的两项之和相等
a 2 + a 3 = a 1 + a 4 a_2+a_3=a_1+a_4 a2+a3=a1+a4
∵ a 1 + a 4 < a 1 + a 5 , 则 a 4 < a 5 , 那么 d > 0 , 递增数列,公差不可能式负值 . ∵a_1+a_4<a1+a5,则a_4<a_5,那么d>0,递增数列,公差不可能式负值. a1+a4<a1+a5,a4<a5,那么d>0,递增数列,公差不可能式负值.
题干信息[等差数列]+[单一等式条件]→特例法,令 a 1 = 0 , 公差为 d a_1=0,公差为d a1=0,公差为d
那么 a 1 = 0 , a 2 = d , a 3 = 2 d a_1=0,a_2=d,a_3=2d a1=0,a2=d,a3=2d
a 2 a 3 = d ∗ 2 d = 50 , 解得 d 2 = 25 , d = 5 或 d = − 5 (舍去) a_2a_3=d*2d=50,解得d^2=25,d=5或d=-5(舍去) a2a3=d2d=50,解得d2=25,d=5d=5(舍去)
答案C.
★★☆☆☆

[2024.07]已知m,n,k都是正整数,若m+n+k=10,则m,n,k得取值方法有().
A.21种
B.28种
C.36种
D.45种
E.55种

【解析】相同元素隔板法,真题历史第二道
oo|ooo|ooooo
10个元素中,有9个空,任意两个隔板将总数分成三份
C 9 2 = 36 C_{9}^{2}=36 C92=36
答案C.
★★★☆☆
插隔板套路题

[2024.08]如图,正三角形ABC边长为3,以A为圆心,以2为半径做圆弧,再分别以B,C为圆心,以1为半径做圆弧,则阴影面积为().
A. 9 3 4 − π 2 \frac{9\sqrt3}{4}-\frac{π}{2} 493 2π
B. 9 3 4 − π \frac{9\sqrt3}{4}-π 493 π
C. 9 3 8 − π 2 \frac{9\sqrt3}{8}-\frac{π}{2} 893 2π
D. 9 3 8 − π \frac{9\sqrt3}{8}-π 893 π
E. 3 3 4 − π 2 \frac{3\sqrt3}{4}-\frac{π}{2} 433 2π

在这里插入图片描述
【解析】阴影面积=正三角形面积-三个60°扇形面积
阴影面积 = 3 4 3 2 − 1 6 π 2 2 − 1 6 π 1 2 − 1 6 π 1 2 = 9 3 4 − π \frac{\sqrt3}{4}3^2-\frac{1}{6}π2^2-\frac{1}{6}π1^2-\frac{1}{6}π1^2=\frac{9\sqrt3}{4}-π 43 3261π2261π1261π12=493 π
答案B.
★★☆☆☆
边长为a正三角型面积公式: 3 4 a 2 \frac{\sqrt3}{4}a^2 43 a2
半径为r的圆的面积公式:: π r 2 πr^2 πr2

[2024.09]在雨季,某水库的蓄水量已达警戒水位,同时上游来水注入水库,需要及时泄洪,若开4个泄洪闸,则水库的蓄水量到安全水位要8天,若开5个泄洪闸,则水库的蓄水量到安全水位要6天,若开7个泄洪闸,则水库的蓄水量到安全水位要().
A.4.8天
B.4天
C.3.6天
D.3.3天
E.3天

【解析】设安全水位与警戒水位之间的水量为1
则 { 8 天 ( 4 个泄洪闸 − 1 个进水闸 ) = 1 6 天 ( 5 个泄洪闸 − 1 个进水闸 ) = 1 则求得 1 个泄洪闸 = 1 24 , 1 个进水闸 1 24 则\begin{cases} 8天(4个泄洪闸-1个进水闸)=1 \\ 6天(5个泄洪闸-1个进水闸)=1 \\ \end{cases}则求得1个泄洪闸=\frac{1}{24},1个进水闸\frac{1}{24} {8(4个泄洪闸1个进水闸)=16(5个泄洪闸1个进水闸)=1则求得1个泄洪闸=2411个进水闸241
代入公式: n ∗ ( 7 ∗ 1 24 − 1 24 ) = 1 n*(7*\frac{1}{24}-\frac{1}{24})=1 n(7241241)=1
n = 4 n=4 n=4
答案B.
★★★☆☆

[2024.10]如图在三角形点阵中,第 n n n行及其上方多有点个数为 a n 如 a 1 = 1 , a 2 = 3 , a_n如a_1=1,a_2=3, ana1=1,a2=3,已知 a k a_k ak是平方数且 1 < a k < 100 , 则 a k = 1<a_k<100,则a_k= 1<ak<100,ak=().
A.16
B.25
C.36
D.49
E.81

【解析】红色框内的为题目自带,直接画图求解
在这里插入图片描述
答案C.
★☆☆☆☆

[2024.11]如图,在边长为2的正三角形材料中,剪裁一个半圆形,已知半圆的直径在三角形的一条边上,则这个半圆的面积最大为().
A. 3 8 π \frac{3}{8}π 83π
B. 3 5 π \frac{3}{5}π 53π
C. 3 4 π \frac{3}{4}π 43π
D. 1 4 π \frac{1}{4}π 41π
E. 1 2 π \frac{1}{2}π 21π

【解析】当正三角形另外两条边与半圆像切时,面积最大。
在这里插入图片描述
在这里插入图片描述
r = 3 2 r=\frac{\sqrt3}{2} r=23
半圆面积 = 1 2 π r 2 = 1 2 π ( 3 2 ) 2 = 3 8 π 半圆面积 = \frac{1}{2}πr^2=\frac{1}{2}π(\frac{\sqrt3}{2})^2=\frac{3}{8}π 半圆面积=21πr2=21π(23 )2=83π
答案A.
★★☆☆☆

[2024.12]甲、乙两码头相距100千米,一艘游轮从甲地顺流而下,到达乙地用了4个小时,返回时游轮的静水速度增加25%,用了5个小时,则航道的水流速度为().
A.3.5km/h
B.4km/h
C.4.5km/h
D.5km/h
E.5.5km/h

【解析】 静水船速 x ,水速 y 静水船速x,水速y 静水船速x,水速y
则 { 4 ( x + y ) = 100 5 ( 1.25 x − y ) = 100 求得 y = 5 则\begin{cases} 4(x+y)=100 \\ 5(1.25x-y)=100 \\ \end{cases}求得y=5 {4x+y=10051.25xy=100求得y=5
答案D.
★★☆☆☆

[2024.13]如图,圆柱形容器的底面半径是2r,将半径为r的铁球放入容器后,液面的高度为r,则液面原来的高度为().
A. r 6 \frac{r}{6} 6r
B. r 3 \frac{r}{3} 3r
C. r 2 \frac{r}{2} 2r
D. 2 3 r \frac{2}{3}r 32r
E. 5 6 r \frac{5}{6}r 65r

【解析】 设原来的高度 h ,最后液面体积 = 半个球体积 + 原液面体积 设原来的高度h,最后液面体积=半个球体积+原液面体积 设原来的高度h,最后液面体积=半个球体积+原液面体积
π ( 2 r ) 2 ∗ r = 1 2 ∗ 4 3 π r 3 + π ( 2 r ) 2 ∗ h π(2r)^2*r=\frac{1}{2}*\frac{4}{3}πr^3+π(2r)^2*h π(2r)2r=2134πr3+π(2r)2h
h = 5 6 h=\frac{5}{6} h=65
在这里插入图片描述
答案E.
★★☆☆☆
半径为r的球体积= 球体积 = 4 3 π r 3 球体积=\frac{4}{3}πr^3 球体积=34πr3
铁球意味着沉底

[2024.14]将4种不同的颜色,甲乙两人各随机选2种,则两人颜色完全相同的概率为().
A. 1 6 \frac{1}{6} 61
B. 1 9 \frac{1}{9} 91
C. 1 12 \frac{1}{12} 121
D. 1 18 \frac{1}{18} 181
E. 1 36 \frac{1}{36} 361

【解析】
古典概型分三步解题
第一步:计算总方法数
C 4 2 ∗ C 4 2 = 36 C_{4}^{2}*C_{4}^{2}=36 C42C42=36
第二部:计算满足要求的方法数
两人颜色完全相同共有 C 4 2 = 6 C_{4}^{2}=6 C42=6
第三步:相除得概率
P= 6 36 = 1 6 \frac{6}{36}=\frac{1}{6} 366=61
答案A.
★★★☆☆
贴士: 1 6 这个答案,在往年考试中出现很多次 \frac{1}{6}这个答案,在往年考试中出现很多次 61这个答案,在往年考试中出现很多次

2024.15: 设非负实数 x 和 y 满足条件 { 2 ≤ x y ≤ 8 x 2 ≤ y ≤ 2 x 则 x + 2 y 的最大值为() 设非负实数x和y满足条件 \begin{cases} 2≤xy≤8 \\ \frac{x}{2}≤y≤2x \\ \end{cases}则x+2y的最大值为() 设非负实数xy满足条件{2xy82xy2xx+2y的最大值为()
A.3
B.4
C.5
D.8
E.10

解题: 要让 x + 2 y 取最大值, y 的值要尽量大 要让x+2y取最大值,y的值要尽量大 要让x+2y取最大值,y的值要尽量大
y = 2 x 时,则 x + 2 y 有最大值 y=2x时,则x+2y有最大值 y=2x时,则x+2y有最大值
{ x y = 8 y = 2 x 则求得 x = 2 , y = 4 , x + 2 y 最大值为 10 \begin{cases} xy=8 \\ y=2x \\ \end{cases}则求得x=2,y=4,x+2y最大值为10 {xy=8y=2x则求得x=2,y=4,x+2y最大值为10
答案E
★★☆☆☆

二、条件充分性选择:16~25小题,每题3分,共30分,要求判断每题给出的条件(1)和条件(2)能否充分支持题干所陈述的结论。A、B、C、D、E五个选项为判断结果,请选择一项符合试题要求的判断。
A.条件(1)充分,但条件(2)不充分。
B.条件(2)充分,但条件(1)不充分。
C.条件(1)和条件(2)单独都不充分,但联合起来充分。
D.条件(1)充分,条件(2)也充分。
E.条件(1)和条件(2)单独都不充分,联合也不充分

[2024.16]已知袋种装有红,黑,白三种颜色的球若干个,随机取出1个球,则该球是白球的概率大于 1 4 \frac{1}{4} 41().
(1).红球数最少
(2).黑球数不到一半

【解析】
两个条件信息均不完全,联合型,选C或E
假设一共有20个球,黑球9个,红球5个,白球6个
答案C.
★☆☆☆☆
贴士:历史上第一题答案没有选择E的

[2024.17]已知 n n n是正整数,则 n 2 除以 3 余 1. n^2除以3余1. n2除以31.()
(1).n除以3余1
(2).n除以3余2

【解析】
两条件互斥,不可能联合成立,单一型ABD中选1个
条件(1)设 n = 3 k + 1 n=3k+1 n=3k+1
推出 n 2 = ( 3 k + 1 ) = 9 k 2 + 6 k + 1 n^2=(3k+1)^=9k^2+6k+1 n2=(3k+1)=9k2+6k+1= 3 ( 3 k 2 + 2 k ) 3(3k^2+2k) 3(3k2+2k)+ 1 1 1
红色公式能被3整除,条件(1)充分。
条件(2)设 n = 3 k + 2 n=3k+2 n=3k+2
推出 n 2 = ( 3 k + 2 ) = 9 k 2 + 12 k + 4 n^2=(3k+2)^=9k^2+12k+4 n2=(3k+2)=9k2+12k+4= 3 ( 3 k 2 + 4 k + 1 ) 3(3k^2+4k+1) 3(3k2+4k+1)+ 1 1 1
红色公式能被3整除,条件(2)充分。
答案D.
★★★☆☆
完全平方和 ( a + b ) 2 = a 2 + 2 a b + b 2 (a+b)^2 = a^2+2ab+b^2 (a+b)2=a2+2ab+b2
完全平方差 ( a − b ) 2 = a 2 − 2 a b + b 2 (a-b)^2 = a^2-2ab+b^2 (ab)2=a22ab+b2
( a + b ) 2 − ( a − b ) 2 = 4 a b (a+b)^2-(a-b)^2 = 4ab (a+b)2(ab)2=4ab
在这里插入图片描述
在这里插入图片描述

[2024.18]设二次函数 f ( x ) = a x 2 + b x + 1 f(x)=ax^2+bx+1 f(x)=ax2+bx+1,则能确定a<b().
(1).曲线 y = f ( x ) y=f(x) y=f(x)关于直线 x = 1 x=1 x=1对称.
(2).曲线 y = f ( x ) y=f(x) y=f(x)关于直线 y = 2 y=2 y=2相切.

【解析】
答案C.
★★★★☆
贴士:历史上第一题答案没有选择E的
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老秦和梁思考

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值