终于等到你:期待已久的CAD .NET 15 Crack

CAD.NET15推出了.NET6框架版本,专注于提升DWG和DXF格式的导入导出性能,包括对MTexts、Texts和Hatch的支持。新增功能如G代码生成,以及对Linux平台的支持计划。此库适用于工业绘图、CNC数据导出等多个领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

期待已久的CAD .NET 15 现已推出!新包包括一个.NET 6 框架构建。目前,它仅与 Windows 兼容,但我们计划在未来的版本中添加对 Linux 的支持。

我们还进行了一系列更改以增强库的稳定性并改进其导入和导出功能。他们来了:

  • 改进了 DWG 和 DXF 格式的导入:
    • 改进了对 МTexts 和 Texts 的支持;
    • 改进了对 Hatch 的支持;
    • 改进了 SHX 字体的显示。
  • 改进了 DWG 和 DXF 格式的导出。
  • 改进了 SVG 格式的导出。
  • 改进了 PDF 格式的导出。
  • 改进了 DWG 和 DXF 文件的 G 代码生成。
  • 添加了分解、修剪、连接和捕捉功能。
  • Bug修复。

CAD .NET is a library for developing solutions in .NET environment. It supports AutoCAD® DWG/ DXFPLT and other CAD formats.

The library can be used in a wide range of spheres:

  • work with industrial drawings at all project stages
  • monitoring and remote control programs
  • CNC machining
  • data export to CAD formats
  • work with databases
  • document management systems
  • highly specialized products using drawings

Features

CAD .NET provides users with the following basic features that can be used in the project under development:

FeaturesVersions
ImportExportEnterprise
Import of CAD formats, raster images and metafiles-
Creation of new drawings from scratch
Access to drawing data structure
Adding/editing drawing data programmatically
Adding/editing drawing data visually--
Visualization and print
Controls for CAD drawings
Export to raster formats and metafiles
Export to CAD formats-
DWG/DXF to G-code--

Technical Specifications:

  • Support of Visual Studio 2005 and newer versions
  • Compatible with the Microsoft .NET CLI programming languages
  • The library assembly is compiled with the ANY_CPU directive which makes it compatible with x86 and x64 platforms
  • Does not require AutoCAD or other third-party applications installation
  • Can be used in server applications on the basis of the ASP.NET technology
  • Inherited classes structure is the basis of the library interface
  • Windows Forms inherited controls for CAD drawings
  • Capability of visualization using GDI+ or OpenGL
  • Demo projects for C# and VB.NET
  • Documentation is available as CHM, MS Help 2 and MS Help Viewer 1.x/2.x

The table shows CAD .NET supported formats:

DXFDWGCGMHPGL / PLTSTLPDFSVGGBREMF / WMFGDSIIRaster:
BMP / JPG / GIF / TIFF / PNG
Import
Export

Controls

CAD .NET provides users with the control elements inherited from Windows Forms to display CAD drawings. Usually such elements are located at Windows Form but they can also be located at the WPF page. If you need an ASP .NET based Web Control, it can be provided additionally. See Web CAD SDK.

The CADPictureBox class is the basic implementation of the control element for displaying vector drawings. Visually CADPictureBox includes only area for drawing visualization and can be extended by the necessary control elements in the project under development. EditorDemo is an example of the project using CADPictureBox.

The CADEditorControl class includes implementation of the required event and settings handlers. To start working with it it is enough to place such a control element in the form. CADEditorControl includes panning, zooming, visual entity selection as well as allows using such features as visual entity creating, visual editing with the help of markers and the Properties window, snap, grid and ortho modes. The EditorControl demo shows how to use this control element.

Deployment in CNC Machines

 

CAD .NET can be used for development of the software that prepares data for CNC machines. DXF format supported by the library is one of the most frequently used file formats for processing two-dimensional surfaces. Access to drawings data enables users to get all the information necessary for processing.

The library also makes it possible to transform entities including conversion of the source drawing texts into polylines with high precision of curved line segment. For example such a feature can be useful for laser processing.

 

 

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值