NMOS管的工作状态及漏极电流与漏源电压、栅源电压之间的关系
以NMOS为例进行说明,PMOS管与NMOS管类似,只是正负极符号需要做些调整。
工作区域
对于NMOS管,根据 V g s V_{gs} Vgs和 V d s V_{ds} Vds大小的不同,MOS管可工作在三极管区、饱和区、截至区,如下图所示:
- 当 V g s < V t h V_{gs}<V_{th} Vgs<Vth时,NMOS管处于截至区;
- 当 V g s > V t h V_{gs}>V_{th} Vgs>Vth且 V d s > V g s − V t h V_{ds}>V_{gs}-V_{th} Vds>Vgs−Vth时,NMOS管处于饱和区;
- 当
V
g
s
>
V
t
h
V_{gs}>V_{th}
Vgs>Vth且
V
d
s
<
V
g
s
−
V
t
h
V_{ds}<V_{gs}-V_{th}
Vds<Vgs−Vth时,NMOS管处于三极管区;
- 其中,当
V
g
s
>
V
t
h
V_{gs}>V_{th}
Vgs>Vth且
V
d
s
≪
2
(
V
g
s
−
V
t
h
)
V_{ds}\ll 2(V_{gs}-V_{th})
Vds≪2(Vgs−Vth)时,NMOS管工作与线性区;
- 其中,当
V
g
s
>
V
t
h
V_{gs}>V_{th}
Vgs>Vth且
V
d
s
≪
2
(
V
g
s
−
V
t
h
)
V_{ds}\ll 2(V_{gs}-V_{th})
Vds≪2(Vgs−Vth)时,NMOS管工作与线性区;
不同工作区域的电流电压关系
截至区
当栅极电压
V
g
s
V_{gs}
Vgs小于阈值电压
V
t
h
V_{th}
Vth时,NMOS管工作在截至区内,有:
I
D
=
0
\begin{align} I_{D}=0 \end{align}
ID=0
三极管区
当栅极电压 V g s V_{gs} Vgs 大于阈值电压 V t h V_{th} Vth,且漏极电压 V d s V_{ds} Vds 小于过驱动电压 V g s − V t h V_{gs}-V_{th} Vgs−Vth 时,NMOS管工作在三极管区,有:
I
D
=
μ
n
C
o
x
W
L
[
(
V
g
s
−
V
t
h
)
V
d
s
−
1
2
V
d
s
2
)
]
\begin{align} I_{D}=\mu_nC_{ox}\frac{W}{L}[(V_{gs}-V_{th})V_{ds}-\frac{1}{2}V_{ds}^2)]\\ \end{align}
ID=μnCoxLW[(Vgs−Vth)Vds−21Vds2)]
此时NMOS管的漏极电流与漏极电压之间呈二次曲线(抛物线)的数学关系,抛物线的顶点位于坐标:
(
V
g
s
−
V
t
h
,
1
2
μ
n
C
o
x
W
L
(
V
g
s
−
V
t
h
)
2
)
(V_{gs}-V_{th}, \frac{1}{2}\mu_nC_{ox}\frac{W}{L}(V_{gs}-V_{th})^2)
(Vgs−Vth,21μnCoxLW(Vgs−Vth)2)
线性区
线性区属于三极管区中的一部分。是指当漏极电压 V d s V_{ds} Vds远远小于二倍的过驱动电压 V g s − V t h V_{gs}-V_{th} Vgs−Vth时,漏极电流 I d I_d Id近似为漏极电压 V d s V_{ds} Vds的线性函数,即:
I
D
=
μ
n
C
o
x
W
L
[
(
V
g
s
−
V
t
h
)
V
d
s
−
1
2
V
d
s
2
)
]
=
μ
n
C
o
x
W
L
[
(
V
g
s
−
V
t
h
−
1
2
V
d
s
)
V
d
s
]
≈
μ
n
C
o
x
W
L
(
V
g
s
−
V
t
h
)
V
d
s
\begin{align} I_{D}&=\mu_nC_{ox}\frac{W}{L}[(V_{gs}-V_{th})V_{ds}-\frac{1}{2}V_{ds}^2)]\\ &=\mu_nC_{ox}\frac{W}{L}[(V_{gs}-V_{th}-\frac{1}{2}V_{ds})V_{ds}]\\ &\approx \mu_nC_{ox}\frac{W}{L}(V_{gs}-V_{th})V_{ds}\\ \end{align}
ID=μnCoxLW[(Vgs−Vth)Vds−21Vds2)]=μnCoxLW[(Vgs−Vth−21Vds)Vds]≈μnCoxLW(Vgs−Vth)Vds
当MOS管工作与开关状态时,有一个重要的参数叫导通电阻,指的就是当MOS工作在导通状态是,MOS管漏极与源极之间相当于接了一个电阻值为:
R
o
n
=
1
(
μ
n
C
o
x
W
L
(
V
g
s
−
V
t
h
)
R_{on}=\frac{1}{(\mu_nC_{ox}\frac{W}{L}(V_{gs}-V_{th})}
Ron=(μnCoxLW(Vgs−Vth)1的电阻。通过公式可知,电阻值与栅极电压
V
g
s
V_{gs}
Vgs有关,栅极电压
V
g
s
V_{gs}
Vgs越高,导通电阻
R
o
n
R_{on}
Ron 越小。
饱和区
当栅极电压
V
g
s
V_{gs}
Vgs 大于阈值电压
V
t
h
V_{th}
Vth,且漏极电压
V
d
s
V_{ds}
Vds 大于过驱动电压
V
g
s
−
V
t
h
V_{gs}-V_{th}
Vgs−Vth 时,NMOS管工作在饱和区。在饱和区,NMOS管的漏极电流
I
d
I_d
Id不再随着漏极电压
V
d
s
V_{ds}
Vds的变化而变化:
I
D
=
1
2
μ
n
C
o
x
W
L
(
V
g
s
−
V
t
h
)
2
\begin{align} I_{D}=\frac{1}{2}\mu_nC_{ox}\frac{W}{L}(V_{gs}-V_{th})^2\\ \end{align}
ID=21μnCoxLW(Vgs−Vth)2
但考虑到NMOS管的沟道长度调制效应,漏极电流
I
d
I_d
Id会随着漏极电压
V
d
s
V_{ds}
Vds的升高而升高.
NMOS器件的跨导
NMOS器件的跨导是指漏极电流 I d I_d Id近对栅极电压 V g s V_{gs} Vgs进行求导.
即当NMOS管工作在饱和区时,有
g m = ∂ ∂ V g s I d = ∂ ∂ V g s ( 1 2 μ n C o x W L ( V g s − V t h ) 2 ) = μ n C o x W L ( V g s − V t h ) = 2 I d ( V g s − V t h ) = 2 I d μ n C o x W L \begin{align} g_m&=\frac{\partial}{\partial V_{gs}}I_d\\ &=\frac{\partial}{\partial V_{gs}}(\frac{1}{2}\mu_nC_{ox}\frac{W}{L}(V_{gs}-V_{th})^2)\\ &=\mu_nC_{ox}\frac{W}{L}(V_{gs}-V_{th})\\ &=\frac{2I_d}{(V_{gs}-V_{th})}\\ &=\sqrt{2I_d\mu_nC_{ox}\frac{W}{L}}\\ \end{align} gm=∂Vgs∂Id=∂Vgs∂(21μnCoxLW(Vgs−Vth)2)=μnCoxLW(Vgs−Vth)=(Vgs−Vth)2Id=2IdμnCoxLW
当工作在三极管区时,有:
g
m
=
∂
∂
V
g
s
I
d
=
∂
∂
V
g
s
(
μ
n
C
o
x
W
L
[
(
V
g
s
−
V
t
h
)
V
d
s
−
1
2
V
d
s
2
)
]
)
=
μ
n
C
o
x
W
L
V
d
s
\begin{align} g_m&=\frac{\partial}{\partial V_{gs}}I_d\\ &=\frac{\partial}{\partial V_{gs}}(\mu_nC_{ox}\frac{W}{L}[(V_{gs}-V_{th})V_{ds}-\frac{1}{2}V_{ds}^2)])\\ &=\mu_nC_{ox}\frac{W}{L}V_{ds}\\ \end{align}
gm=∂Vgs∂Id=∂Vgs∂(μnCoxLW[(Vgs−Vth)Vds−21Vds2)])=μnCoxLWVds
因为工作在三极管区时有漏极电压
V
d
s
V_{ds}
Vds小于过驱动电压
V
d
s
<
V
g
s
−
V
t
h
V_{ds}<V_{gs}-V_{th}
Vds<Vgs−Vth,因此,栅极电压相同时,工作在三极管区的跨导要小于工作在饱和区的跨导.
沟道长度调制效应
随着漏极电压 V d s V_{ds} Vds的升高,NMOS管的有效沟道长度会缩短,因此工作在饱和区的漏极电流公式(6)需做调整.
设沟道长度的相对减少量
Δ
L
L
\frac{\Delta L}{L}
LΔL与漏极电压
V
d
s
V_{ds}
Vds成正比,即
Δ
L
L
=
λ
V
d
s
\frac{\Delta L}{L}=\lambda V_{ds}
LΔL=λVds, 将公式(6)以
L
L
L为自变量进行一阶泰勒级数展开:
I
D
(
L
)
=
1
2
μ
n
C
o
x
W
L
(
V
g
s
−
V
t
h
)
2
(
1
+
λ
V
d
s
)
\begin{align} I_{D}(L)&=\frac{1}{2}\mu_nC_{ox}\frac{W}{L}(V_{gs}-V_{th})^2(1+\lambda V_{ds}) \end{align}
ID(L)=21μnCoxLW(Vgs−Vth)2(1+λVds)
NMOS管的体效应
以上都是基于NMOS管的源极与NMOS管的衬底位于同一电平下进行讨论的。若衬底与源极不在同一电位上,NMOS管的阈值电压将发生变化。
当NMOS管的源衬电压增加时,阈值电压要增加。