宋浩线性代数笔记(三)n维向量与线性方程组

文章探讨了线性代数中n维向量的概念,包括向量的线性组合、线性相关性、极大线性无关组和秩等核心概念。考研大纲强调理解向量的线性表示、向量组的秩和矩阵的秩之间的关系,以及正交规范化方法。线性无关向量组的正交规范化是通过施密特方法实现的,而正交矩阵具有特定的性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        总的来说,这几乎是线代中最难的章节,原因在于不符合人类主观的思维方式——人的视角里只能呈现三维以内的世界,而n维向量往往会涉及多个维度,很多问题的角度我们无法有直观的印象。

        此外,本章在考研中出题 较难——主要体现在并不出纯数字的计算题,而往往是以抽象符号的形式表出;而且定理与套路非常繁琐,需要通过大量练习达到熟能生巧的境界~


考研的大纲如下:

向量的概念 向量的线性组合线性表示 向量组的线性相关线性无关 向量组的极大线性无关组等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量空间以及相关概念 n维向量空间基变换坐标变换 过渡矩阵 向量的内积 线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质

考试要求:

1.理解n维向量、向量的线性组合与线性表示的概念.

2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.

3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.

4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系

5.了解n维向量空间、子空间、基底、维数、坐标等概念.

6.了解基变换和坐标变换公式,会求过渡矩阵.

7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.

8.了解规范正交基正交矩阵的概念以及它们的性质.


下面,简单来说一下这章讲了什么:

3.1n维向量及其运算

        所谓n维向量,即n个数组成的有序数组,这n个数叫做n个分量,n叫做向量的维数~向量可以分为行向量和列向量~

        向量相加是指对应分量的相加,而数乘则是每个分量分别相乘。

3.2向量间的线性关系

        所谓线性组合,假设a1~an都是m维向量,若存在k1~kn,使得b=k1a1+……knan,则称b是a向量组的线性组合,亦或称b可以由a线性表示(注意,此时k被称为组合系数,且可以全取0)~

        不难看出,向量组中的任何一个向量都可以由整个向量组来表示~

        n维基本向量组:向量序号对应位置的维度为1,其他位置均为0(组合成单位矩阵),任何向量都可以由它线性表出~

        我们常见的方程组中,未知数是向量所数乘的数,而方程组中的系数则是向量中的元素,无论是行向量还是列向量可以作为这个系数常数项~

        所谓矩阵的等价,是指两个矩阵可以经过初等变化互相得到;而两个同维度的向量组,可以相互线性表示,则称他们等价~

  • 任何一个向量组与自己等价
  • 传递性,且不受顺序影响
  • 对称性

        现有n个m维的向量,若存在一组不全为0的系数,使得向量对应相乘后等于0,则称该向量组线性相关——本质就是相互消去;若找不到一组不全为0的系数,则称为非线性相关~

        含有0向量的向量组必定线性相关!

        一个线性相关的向量组,添加无数个同维度向量后,仍然是线性相关的~(不分组相关,则整体相关~)

        若低维度的向量线性无关,则其扩展n维后必定也线性无关;反之,线性相关的向量组,其截短向量亦线性相关~

        n个n维向量,其系数行列式不为0,则线性无关——相当于不能通过线性变化彼此消去,所以必然不相关(可以理解为不成比例)——因此,对于齐次方程组,系数行列式D如果不为0,则必然有0解(线性无关无法找到不全为0的一组常数k,此时未知数x也就是所谓的未知常数k~)

 (也就是说,本身相关则不需要靠k值(x未知数)来充当0的角色~)

  • 向量组内向量线性相关的充要条件是,至少有一个向量可以由其余向量线性表示~
  • 已知原向量组线性无关,则加入一个后线性相关的话,新加入的向量可以由原向量组唯一表示~
  • 替换定理:A向量组线性无关,却可以由B线性表示,则A中的向量一定小于等于B之中的~
  • n+1个n维向量一定线性相关——相当于方程数大于未知数数量

3.3向量组的秩

矩阵的秩:非0子式的最高阶数~

极大线性无关组:向量组内的向量彼此无关,且全体向量均可由该组表示~

(不唯一)

任何一个向量组和他的极大线性无关组都是等价的——即可以相互线性表示~

所谓向量组的秩,即极大无关组内向量的个数~

线性无关的充要条件是,秩等于向量的个数(无关组内)~(相关则必然小于)

A可以由B表示,则A的秩一定小于B的秩

初等行变化不改变列向量组之间的线性关系~

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lyric群青

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值