机器学习BOOST总结

XGBOOST算法基础

其核心规则是回归树,与决策树类似,区别在于回归树预测实数值,决策树是类标签,也就是回归树的每一个叶节点是实数,最终结果是实数的累加,如果分到叶子结点的训练样本预测值不唯一的时候,以所有样本预测值的均值作为叶子结点输出的预测值。回归树解决分类问题时,也是基于回归树,而不是决策树。

http://upload-images.jianshu.io/upload_images/3268630-a9309ab536a0a5bb.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240

在回归树(base learner)的基础上,通过数增强(Tree Ensemble)的方式来加强模型的预测能力,比如gbdt、rf等都是基于这种理论,使得模型对特征不敏感,无需对特征进行归一化处理。

http://upload-images.jianshu.io/upload_images/3268630-7a62cbc636e82505.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240

可以把回归树当做一个从特征空间到预测值的映射函数。将问题简化为,如何调整到适合的参数,并设计优化目标,使得预测结果最佳。xgboost里引入了泰勒展开来近似和简化优化目标。

对于每一轮迭代即每一棵树,如何找到该轮迭代的最优的树结构,找到这一轮的参数呢,我们采用一种贪心算法。

1 初始:从树只有一个结点,不分裂开始

2 迭代:对于每一个叶结点,根据增益分裂结点。

在分裂结点的时候,如何找到该次分裂最佳的分割点呢?实现方法是:遍历所有特征,对每个特征将样本按这个特征排好序,从左向右,依次遍历。每次遍历,向左边加入一个结点,向右边减掉这个结点,然后计算此时的gain。最后选择gain最大的特征的最佳分割点作为该次分裂的分割点。

gain可能为负。即当训练损失的下降小于正则项的时候。

这时候有两种策略:pre_stopping和post_pruning:

pre_stopping:当gain<0时,停止分裂。但是这有一个问题,即这一个结点分裂gain是负的,下一层的分裂gain就是正的了。这种情况pre_stopping不能避免。

post_prunning:让树分裂达到设定的max_depth,然后递归的合并那些是负gain的结点。

 

从cart树到xgboost

cart树(classification and regression tree)是一种分类回归决策树,可以同时处理分类和回归两类问题,它处理分类问题时使用基尼指数作为目标函数,处理回归问题时用均方误差作为目标函数。

模型的误差Error = Bias + Variance + Noise,一般而言我们只考虑前两项。简单模型具有大的Bias和小的Variance,模型比较稳定;复杂模型具有小的Bias和大的Variance,模型不稳定,在不同的数据集上预测结果差异较大,也就是通常所说的过拟合。

Bias衡量的是学习模型f_hat和最优模型f之间的差别,Variance衡量的是学习的模型f_hat自身的泛化能力。

Boosting

https://f11.baidu.com/it/u=3875924689,3352941338&fm=170&s=23D1AB6A97F4B1D254F9FD1A030080C1&w=639&h=260&img.PNG&access=215967316

通过boosting可以有效的降低Bias,从而获得更好的性能。

gradient boosting

属于boosting算法的一种,每次模型都建立在前一个模型损失函数梯度的方向,沿梯度下降最快。

gbdt

Gbdt(gradient boosting decision tree)建立在gradient boosting框架下,使用的模型是树模型,通常是cart树。使用logit作为损失函数处理分类问题,使用均方误差作为损失函数处理回归问题。

xgboost

Xgboost是对gbdt的一种高效、分布式的实现。主要解决了两个问题,

1.叶子节点的函数值;

使用泰勒展开将损失函数转换后,通过最小二乘法得到最优函数;

2.中间节点的特征选取和分裂数值。 同时为了分布式实现,对均损失函数进行二阶泰勒展开,利用了函数的二阶导数信息。

使用贪心算法枚举所有特征的所有可能值,计算出信息增益最大的特征组合;

将每一个维度的特征进行排序,计算数据分布的百分比,选出最优的分裂值;

此外xgboost的实现还有很多的优化,比如

1)同时支持CART和支持线性分类器作为基本分离器,。

2)支持自定义代价函数,要求函数二阶可导。

3)xgboost在代价函数里加入了正则项,用于控制模型的复杂度。正则项降低了模型的variance,防止过拟合。

4)Shrinkage(缩减),在进行完一次迭代后,会将叶子节点的权重乘上该系数,主要是为了削弱每棵树的影响,让后面有更大的学习空间。

5) column subsampling,从实践上看效果要优于使用全部的特征。

对缺失值的处理。对于特征的值有缺失的样本,xgboost可以自动学习出它的分裂方向。

6)对缺失值、category值,稀疏数值的处理,从其余特征中学到default分类方向。

XGBOOST以正则化提升技术而闻名,正则化可以有效减少过拟合;

XGBOOST可以支持并行算法;

XGBOOST允许自定义目标函数和损失函数;

XGBOOST可以内置缺失值的处理方法,在不同结点选择不同的缺失值处理方法;

GBM分裂时遇到负值会停止分裂,XGBOOST会继续分裂直到达到指定的最大深度(MAX_DEPTH),再回过头来剪枝,剪枝的方法是去除后面不再有正值的枝,这样可以保留出现负值后又分裂出正值这一类的枝条;

GBM使用网格搜索,XGBOOST允许在每次迭代中使用交叉验证,可以有效获得最优迭代次数;

GBM和XGBOOST允许在上一轮结果上继续训练。

 

XGBoost的参数

XGBoost的作者把所有的参数分成了三类:

1、通用参数:宏观函数控制。

2、Booster参数:控制每一步的booster(tree/regression)。

3、学习目标参数:控制训练目标的表现。

在这里我会类比GBM来讲解,所以作为一种基础知识。

通用参数

这些参数用来控制XGBoost的宏观功能。

1、booster[默认gbtree]

选择每次迭代的模型,有两种选择:

gbtree:基于树的模型

gbliner:线性模型

2、silent[默认0]

当这个参数值为1时,静默模式开启,不会输出任何信息。 一般这个参数就保持默认的0,因为这样能帮我们更好地理解模型。

3、nthread[默认值为最大可能的线程数]

这个参数用来进行多线程控制,应当输入系统的核数。 如果你希望使用CPU全部的核,那就不要输入这个参数,算法会自动检测它。

还有两个参数,XGBoost会自动设置,目前你不用管它。接下来咱们一起看booster参数。

booster参数

尽管有两种booster可供选择,我这里只介绍tree booster,因为它的表现远远胜过linear booster,所以linear booster很少用到。

1、eta[默认0.3]

和GBM中的 learning rate 参数类似。 通过减少每一步的权重,可以提高模型的鲁棒性。 典型值为0.01-0.2。

2、min_child_weight[默认1]

决定最小叶子节点样本权重和。 和GBM的 min_child_leaf 参数类似,但不完全一样。XGBoost的这个参数是最小样本权重的和,而GBM参数是最小样本总数。 这个参数用于避免过拟合。当它的值较大时,可以避免模型学习到局部的特殊样本。 但是如果这个值过高,会导致欠拟合。这个参数需要使用CV来调整。

3、max_depth[默认6]

和GBM中的参数相同,这个值为树的最大深度。 这个值也是用来避免过拟合的。max_depth越大,模型会学到更具体更局部的样本。 需要使用CV函数来进行调优。 典型值:3-10

4、max_leaf_nodes

树上最大的节点或叶子的数量。 可以替代max_depth的作用。因为如果生成的是二叉树,一个深度为n的树最多生成n2个叶子。 如果定义了这个参数,GBM会忽略max_depth参数。

5、gamma[默认0]

在节点分裂时,只有分裂后损失函数的值下降了,才会分裂这个节点。Gamma指定了节点分裂所需的最小损失函数下降值。 这个参数的值越大,算法越保守。这个参数的值和损失函数息息相关,所以是需要调整的。

6、max_delta_step[默认0]

这参数限制每棵树权重改变的最大步长。如果这个参数的值为0,那就意味着没有约束。如果它被赋予了某个正值,那么它会让这个算法更加保守。 通常,这个参数不需要设置。但是当各类别的样本十分不平衡时,它对逻辑回归是很有帮助的。 这个参数一般用不到,但是你可以挖掘出来它更多的用处。

7、subsample[默认1]

和GBM中的subsample参数一模一样。这个参数控制对于每棵树,随机采样的比例。 减小这个参数的值,算法会更加保守,避免过拟合。但是,如果这个值设置得过小,它可能会导致欠拟合。 典型值:0.5-1

8、colsample_bytree[默认1]

和GBM里面的max_features参数类似。用来控制每棵随机采样的列数的占比(每一列是一个特征)。 典型值:0.5-1

9、colsample_bylevel[默认1]

用来控制树的每一级的每一次分裂,对列数的采样的占比。 我个人一般不太用这个参数,因为subsample参数和colsample_bytree参数可以起到相同的作用。但是如果感兴趣,可以挖掘这个参数更多的用处。

10、lambda[默认1]

权重的L2正则化项。(和Ridge regression类似)。 这个参数是用来控制XGBoost的正则化部分的。虽然大部分数据科学家很少用到这个参数,但是这个参数在减少过拟合上还是可以挖掘出更多用处的。

11、alpha[默认1]

权重的L1正则化项。(和Lasso regression类似)。 可以应用在很高维度的情况下,使得算法的速度更快。

12、scale_pos_weight[默认1]

在各类别样本十分不平衡时,把这个参数设定为一个正值,可以使算法更快收敛。

学习目标参数

这个参数用来控制理想的优化目标和每一步结果的度量方法。

1、objective[默认reg:linear]

这个参数定义需要被最小化的损失函数。最常用的值有:

binary:logistic 二分类的逻辑回归,返回预测的概率(不是类别)。 multi:softmax 使用softmax的多分类器,返回预测的类别(不是概率)。

在这种情况下,你还需要多设一个参数:num_class(类别数目)。 multi:softprob 和multi:softmax参数一样,但是返回的是每个数据属于各个类别的概率。

2、eval_metric[默认值取决于objective参数的取值]

对于有效数据的度量方法。 对于回归问题,默认值是rmse,对于分类问题,默认值是error。 典型值有:

rmse 均方根误差(∑Ni=1?2N??????√) mae 平均绝对误差(∑Ni=1|?|N) logloss 负对数似然函数值 error 二分类错误率(阈值为0.5) merror 多分类错误率 mlogloss 多分类logloss损失函数 auc 曲线下面积

3、seed(默认0)

随机数的种子 设置它可以复现随机数据的结果,也可以用于调整参数

如果你之前用的是Scikit-learn,你可能不太熟悉这些参数。但是有个好消息,python的XGBoost模块有一个sklearn包,XGBClassifier。这个包中的参数是按sklearn风格命名的。会改变的函数名是:

1、eta ->learning_rate

2、lambda->reg_lambda

3、alpha->reg_alpha

你肯定在疑惑为啥咱们没有介绍和GBM中的’n_estimators’类似的参数。XGBClassifier中确实有一个类似的参数,但是,是在标准XGBoost实现中调用拟合函数时,把它作为’num_boosting_rounds’参数传入。

 

 

 

参数调优的一般方法。

我们会使用和GBM中相似的方法。需要进行如下步骤:

1. 选择较高的学习速率(learning rate)。一般情况下,学习速率的值为0.1。但是,对于不同的问题,理想的学习速率有时候会在0.05到0.3之间波动。选择对应于此学习速率的理想决策树数量。XGBoost有一个很有用的函数“cv”,这个函数可以在每一次迭代中使用交叉验证,并返回理想的决策树数量。

2. 对于给定的学习速率和决策树数量,进行决策树特定参数调优(max_depth, min_child_weight, gamma, subsample, colsample_bytree)。在确定一棵树的过程中,我们可以选择不同的参数。

3. xgboost的正则化参数的调优。(lambda, alpha)。这些参数可以降低模型的复杂度,从而提高模型的表现。

4. 降低学习速率(learning rate),确定理想参数,重复上述的调优过程。

 

参数调优顺序

1、max_depth = 5 :这个参数的取值最好在3-10之间。

2、min_child_weight = 1:在这里选了一个比较小的值,因为这是一个极不平衡的分类问题。因此,某些叶子节点下的值会比较小。

3、gamma = 0: 起始值也可以选其它比较小的值,在0.1到0.2之间就可以。这个参数后继也是要调整的。

4、subsample,colsample_bytree = 0.8: 这个是最常见的初始值了。典型值的范围在0.5-0.9之间。

5、scale_pos_weight = 1: 这个值是因为类别十分不平衡。

注意哦,上面这些参数的值只是一个初始的估计值,后继需要调优。这里把学习速率learning rate就设成默认的0.1,然后用xgboost中的cv函数来确定最佳的决策树数量。GridSearchCV()

依次按上述步骤对参数进行调优,调一个参数时保持其他参数值不变。

上述参数调整好后,应用正则化来降低过拟合,即调整’reg_alpha’参数,和’reg_lambda’参数。

最后,我们使用较低的学习速率,以及使用更多的决策树。重复上述过程。

总结

1、仅仅靠参数的调整和模型的小幅优化,想要让模型的表现有个大幅度提升是不可能的。GBM的最高得分是0.8487,XGBoost的最高得分是0.8494。确实是有一定的提升,但是没有达到质的飞跃。

2、要想让模型的表现有一个质的飞跃,需要依靠其他的手段,诸如,特征工程(feature egineering) ,模型组合(ensemble of model),以及堆叠(stacking)等。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

归去来?

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值