课堂学习笔记
机器学习—基础算法五
Boost
- 可用于回归和分类
- 每一步产生一个弱分类器,并加权累加到总模型中
- 如果每一步的弱预测模型生成都是依赖于损失函数的梯度方向,则称之为梯度提升
- 梯度提升
- 首先给定一个目标损失函数,该函数的定义域是所有科学的弱函数集合(基函数)
- 通过迭代选择一个负梯度方向上的基函数来逐渐逼近局部最小值
- 理论意义
- 如果一个问题存在弱分类器,则可以通过提升的方法得到强分类器
- 提升算法
- 给定输入向量x和输出变量y组成的若干训练样本 ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x n , y n ) (x_1,y_1),(x_2,y_2),…,(x_n,y_n) (x1,y1),(x2,y2),…,(xn,yn), 目标是找到近似函数 F ^ ( x ) \hat{F}(x) F^(x),使得损失函数L(y,F(x))的损失值最小
- L(y,F(x))的典型定义为
- L ( y , F ( x ) ) = 1 2 ( y − F ( x ) ) 2 L(y,F(x))=\frac{1}{2}(y-F(x))^2 L(y,F(x))=21(y−F(x))2
- L ( y , F ( x ) ) = ∣ y − F ( x ) ∣ L(y,F(x))=|y-F(x)| L(y,F(x))=∣y−F(x)∣
- 假定最优函数 F ∗ ( ) F^*() F∗()