机器学习---基础算法五---Boost

机器学习—基础算法五

Boost

  • 可用于回归和分类
  • 每一步产生一个弱分类器,并加权累加到总模型中
    • 如果每一步的弱预测模型生成都是依赖于损失函数的梯度方向,则称之为梯度提升
  • 梯度提升
    • 首先给定一个目标损失函数,该函数的定义域是所有科学的弱函数集合(基函数)
    • 通过迭代选择一个负梯度方向上的基函数来逐渐逼近局部最小值
  • 理论意义
    • 如果一个问题存在弱分类器,则可以通过提升的方法得到强分类器
  • 提升算法
    • 给定输入向量x和输出变量y组成的若干训练样本 ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x n , y n ) (x_1,y_1),(x_2,y_2),…,(x_n,y_n) (x1,y1),(x2,y2),,(xn,yn), 目标是找到近似函数 F ^ ( x ) \hat{F}(x) F^(x),使得损失函数L(y,F(x))的损失值最小
    • L(y,F(x))的典型定义为
      • L ( y , F ( x ) ) = 1 2 ( y − F ( x ) ) 2 L(y,F(x))=\frac{1}{2}(y-F(x))^2 L(y,F(x))=21(yF(x))2
      • L ( y , F ( x ) ) = ∣ y − F ( x ) ∣ L(y,F(x))=|y-F(x)| L(y,F(x))=yF(x)
    • 假定最优函数 F ∗ ( ) F^*() F()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王二小、

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值