python 数据可视化(seaborn)(3)

seaborn 绘图展示数据标签

y= data11['总数']
sns.set(style='darkgrid',context='talk',font='SimHei')
plt.subplots(figsize= (18,10))
plt.title('回收数量统计')
ax1 =sns.barplot(data11['型号'],data11['总数'],palette='pastel')
ax1.set_xticklabels(ax1.get_xticklabels(), rotation=-90)
for index in range(len(y)):
    ax1.text(index,y.values[index]+1,'%d'%y.values[index],ha='center')

不必纠结柱状图的x轴坐标, for 循环,从0 开始标注

import seaborn as sns
import numpy as np
import pandas

sns.set(style='ticks', color_codes=True)
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']
# 能够识别中文
data = pandas.read_csv('./tips.csv')
# 'F:\\tips.csv' 文件存放的路径
# 读取文件数据
grouped_values = data.groupby('day').sum().reset_index()
# 按照day进行数据分组,得到一个按day分组汇总后的数据
pal = sns.color_palette('Greens_d', len(grouped_values))
rank = grouped_values['total_bill'].argsort().argsort()
g = sns.barplot(x='day', y='tip', data=grouped_values, palette=np.array(pal[::-1])[rank])
for index, row in grouped_values.iterrows():
    g.text(row.name, row.tip, round(row.total_bill, 2), color='black', ha='center')
plt.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值