深度学习算法优化系列十 | 二值神经网络(Binary Neural Network,BNN)

前言

昨天介绍的BinaryConnect提出将浮点权重量化到1bit,提出了完整的量化权重训练/测试流程,并且从带噪声权重的角度来解释了量化权重。但这种方法还有一个缺点,即并没有对激活函数进行量化,所以Bengio大神在2016年发表了这篇Binary Neural Network,论文原文和代码链接见附录。

BNN算法

二值化的方法

二值化方法主要有两种,确定式二值化和随机式二值化。二值化将float类型权重转换为两个值,一个非常简单直接的二值化操作基于符号函数:
在这里插入图片描述
其中 w b w_b wb是二值化权重, w w w是实值权重。这是一个确定式的二值化操作,另外一种方案是随机二值化,即以一定的概率更新值:

在这里插入图片描述
其中 σ ( x ) = c l i p ( x + 1 2 , 0 , 1 ) = m a x ( 0 , m i n ( 1 , x + 1 2 ) ) \sigma(x)=clip(\frac{x+1}{2},0,1)=max(0,min(1,\frac{x+1}{2})) σ(x)=clip(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值