银行客户画像搭建与应用

文章介绍了客户画像的概念,作为系统描述客户信息的方式,它涉及结构化和非结构化的数据,包括实时、挖掘模型和预测类标签。银行标签体系涵盖客户属性、关联关系、兴趣偏好、价值信息和风险信息等。客户画像的应用包括营销增强、用户洞察等多个场景。文中通过刷卡摘要挖掘和快捷支付标签的案例展示了如何开发和利用客户标签进行精准营销。此外,还强调了标签的准确性评估和客户提升潜力的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、理论介绍

1.1 感性认识

  • 目标:描述客户、了解客户、认识客户、理解客户

  • 展现:图像、文本、数据、语音

  • 形式:结构化、非结构化

  • 标准:系统信息知识

  • 验证:统计检验、实事检验

1.2 客户画像定义

客户画像是对客户信息在特定业务场景下的系统描述,是对客户数据的建模

1.3 客户画像与标签

  • 客户特征:客户信息数据的结构化处理

  • 客户标签:对客户特征的业务描述

  • 客户标签是客户画像的元素,客户画像的搭建需要一个高效、全面的标签体系

  • 客户画像:客户标签在特定业务目标下的有序集合

1.4 银行标签体系

标签属性类型:实时类标签、挖掘模型类标签、预测类标签

标签体系:

  • 客户基本属性:人口统计信息、生活信息、位置信息、自定义信息

  • 客户关联关系:生活关联信息、金融关联信息、社交网络信息

  • 客户兴趣偏好:金融产品偏好、非金融产品偏好、行内渠道偏好、非行内渠道偏好

  • 客户价值信息:用户自身价值、用户对我行贡献

  • 用户风险信息:用户风险评价、黑名单信息

  • 客户兴趣偏好:近期需求、营销活动信息

应用场景:营销增强、用户洞察、渠道优化、产品创新、运营提升、风险控制

1.5 业务层次划分

1.6标签体系搭建

  • 制定标签分层体系

  • 根据业务需求制定标签体系框架,逐步丰富标签内容

  • 整合可用数据资源

  • 客户交易数据

  • 客户行为数据

  • 客户账户数据

  • 客户风险数据

  • 客户社交数据

  • 模型挖掘客户标签

  • 结合业务人员经验进行数据建模,挖掘客户标签

  • 客户标签实际应用

  • 实践检验真理,实际应用结果有助于优化标签体系

  • 客户标签评估优化

  • 建立一个标签的评估体系,持续优化标签体系

二、客户画像应用案例

2.1 360客户视图

3.2 30秒认知客户

3.3 个性化产品推荐

4、客户画像开发案例

4.1刷卡摘要挖掘

  • 项目:有孩客户的标签开发

  • 需求:非金融服务(亲子活动)推广,圈定目标客群,精准营销投放

  • 模型:

  1. 样本:问卷调查

  1. 特征处理:词袋、词向量、TF-IDF

  1. 模型:LR、SVM

  • 效果:

  • 营销响应:9%

  • ROC:83%

4.2快捷支付标签

  • 项目:快捷支付特性标签

  • 需求:客户分群,直销银行推广营销,非金融服务的推广

  • 模型:

  • 特征处理:归一化 / 标准化

  • 模型:K-均值聚类

  • 聚类字段:

  • 近三月总交易平均次数

  • 近三月总交易平均金额

  • 近三月微信支付平均交易金额 / 次数

  • 近三月支付宝平均交易金额 / 次数

  • 近三月其他快捷支付平均交易金额 / 次数

  • 年龄

  • 签约时间

  • 客户类型

  • 投资型客户:客户购买一些互联网金融产品

  • 支付需求客户:充值、小额支付、红包

  • 网购达人:经常网上购买商品

  • 临时型支付需求客户:客户签约之后短时间内只做了3次以下支付交易

  • 综合均衡型客户:没有使用偏好

5、客户提升潜力标签

标签评价

  • 准确性:多样性、覆盖率、新颖性、召回率

  • 问卷主观评价

  • 点击率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值