1、理论介绍
1.1 感性认识
目标:描述客户、了解客户、认识客户、理解客户
展现:图像、文本、数据、语音
形式:结构化、非结构化
标准:系统信息知识
验证:统计检验、实事检验
1.2 客户画像定义

客户画像是对客户信息在特定业务场景下的系统描述,是对客户数据的建模
1.3 客户画像与标签
客户特征:客户信息数据的结构化处理
客户标签:对客户特征的业务描述
客户标签是客户画像的元素,客户画像的搭建需要一个高效、全面的标签体系
客户画像:客户标签在特定业务目标下的有序集合

1.4 银行标签体系
标签属性类型:实时类标签、挖掘模型类标签、预测类标签
标签体系:
客户基本属性:人口统计信息、生活信息、位置信息、自定义信息
客户关联关系:生活关联信息、金融关联信息、社交网络信息
客户兴趣偏好:金融产品偏好、非金融产品偏好、行内渠道偏好、非行内渠道偏好
客户价值信息:用户自身价值、用户对我行贡献
用户风险信息:用户风险评价、黑名单信息
客户兴趣偏好:近期需求、营销活动信息
应用场景:营销增强、用户洞察、渠道优化、产品创新、运营提升、风险控制
1.5 业务层次划分

1.6标签体系搭建
制定标签分层体系
根据业务需求制定标签体系框架,逐步丰富标签内容
整合可用数据资源
客户交易数据
客户行为数据
客户账户数据
客户风险数据
客户社交数据
模型挖掘客户标签
结合业务人员经验进行数据建模,挖掘客户标签
客户标签实际应用
实践检验真理,实际应用结果有助于优化标签体系
客户标签评估优化
建立一个标签的评估体系,持续优化标签体系
二、客户画像应用案例
2.1 360客户视图

3.2 30秒认知客户

3.3 个性化产品推荐


4、客户画像开发案例
4.1刷卡摘要挖掘
项目:有孩客户的标签开发
需求:非金融服务(亲子活动)推广,圈定目标客群,精准营销投放
模型:
样本:问卷调查
特征处理:词袋、词向量、TF-IDF
模型:LR、SVM
效果:
营销响应:9%
ROC:83%

4.2快捷支付标签
项目:快捷支付特性标签
需求:客户分群,直销银行推广营销,非金融服务的推广
模型:
特征处理:归一化 / 标准化
模型:K-均值聚类
聚类字段:
近三月总交易平均次数
近三月总交易平均金额
近三月微信支付平均交易金额 / 次数
近三月支付宝平均交易金额 / 次数
近三月其他快捷支付平均交易金额 / 次数
年龄
签约时间
客户类型
投资型客户:客户购买一些互联网金融产品
支付需求客户:充值、小额支付、红包
网购达人:经常网上购买商品
临时型支付需求客户:客户签约之后短时间内只做了3次以下支付交易
综合均衡型客户:没有使用偏好
5、客户提升潜力标签


标签评价
准确性:多样性、覆盖率、新颖性、召回率
问卷主观评价
点击率