TX2上yolov3精度和速度优化方向

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/jwy2014/article/details/84843646

 

速度优化的方向:

1、减少输入图片的尺寸, 但是相应的准确率可能会有所下降
2、优化darknet工程源代码(去掉一些不必要的运算量或者优化运算过程)
3、剪枝和量化yolov3网络(压缩模型---> 减枝可以参考tiny-yolo的过程 , 量化可能想到的就是定点化可能也需要牺牲精度)
4、darknet -----> caffe/tensorflow + tensorrt(主要是针对GPU这块的计算优化)

精度优化的方向:

1、增加数据量和数据种类(coco + voc + kitti数据集训练)
2、超参数的调整:(batch learnrate)

展开阅读全文

没有更多推荐了,返回首页