两数之和
-
题目描述:
-
方法一:
- 暴力枚举
- 思路及算法:
- 最容易想到的方法是枚举数组中的每一个数 x,寻找数组中是否存在 target - x。当我们使用遍历整个数组的方式寻找 target - x 时,需要注意到每一个位于 x 之前的元素都已经和 x 匹配过,因此不需要再进行匹配。而每一个元素不能被使用两次,所以我们只需要在 x 后面的元素中寻找 target - x。
package SumOfTwoNumbers;//暴力枚举: // 思路及算法: // 最容易想到的方法是枚举数组中的每一个数 x,寻找数组中是否存在 target - x。 // 当我们使用遍历整个数组的方式寻找 target - x 时,需要注意到每一个位于 x 之前的元素都已经和 x 匹配过, // 因此不需要再进行匹配。而每一个元素不能被使用两次,所以我们只需要在 x 后面的元素中寻找 target - x。 //复杂度分析: // 时间复杂度:O(N^2),其中 NN 是数组中的元素数量。最坏情况下数组中任意两个数都要被匹配一次。 // 空间复杂度:O(1)。 import java.util.Scanner; public class SumOfTwoNumbers01 { public static void main(String[] args) { Scanner input = new Scanner(System.in); System.out.print("Enter an integer array: "); String[] arr = input.next().toString().split(","); System.out.print("Enter a target: "); int target = input.nextInt(); int[] nums = new int[arr.length]; for (int i = 0;i < arr.length;i++) nums[i] = Integer.parseInt(arr[i]); int[] nums2 = twoSum(nums,target); System.out.println("[" + nums2[0] + "," + nums2[1] + "]"); } public static int[] twoSum(int[] nums,int target){ int len = nums.length; for (int i = 0;i <len - 1;i++){ for (int j = i + 1;j < len;j++){ if (nums[i] + nums[j] == target){ return new int[]{i,j}; } } } throw new IllegalArgumentException("No two sum solution"); } }
- 最容易想到的方法是枚举数组中的每一个数 x,寻找数组中是否存在 target - x。当我们使用遍历整个数组的方式寻找 target - x 时,需要注意到每一个位于 x 之前的元素都已经和 x 匹配过,因此不需要再进行匹配。而每一个元素不能被使用两次,所以我们只需要在 x 后面的元素中寻找 target - x。
- 复杂度分析:
- 时间复杂度:O(N^2),其中 NN 是数组中的元素数量。最坏情况下数组中任意两个数都要被匹配一次。
- 空间复杂度:O(1)。
- 思路及算法:
- 暴力枚举
-
方法二:
- 哈希表:
- 思路及算法:
- 注意到方法一的时间复杂度较高的原因是寻找 target - x 的时间复杂度过高。因此,我们需要一种更优秀的方法,能够快速寻找数组中是否存在目标元素。如果存在,我们需要找出它的索引。使用哈希表,可以将寻找 target - x 的时间复杂度降低到从 O(N) 降低到 O(1)。这样我们创建一个哈希表,对于每一个 x,我们首先查询哈希表中是否存在 target - x,然后将 x 插入到哈希表中,即可保证不会让 x 和自己匹配。
package SumOfTwoNumbers;//哈希表: // 思路及算法: // 注意到方法一的时间复杂度较高的原因是寻找 target - x 的时间复杂度过高。 // 因此,我们需要一种更优秀的方法,能够快速寻找数组中是否存在目标元素。 // 如果存在,我们需要找出它的索引。 // 使用哈希表,可以将寻找 target - x 的时间复杂度降低到从 O(N)O(N) 降低到 O(1)O(1)。 // 这样我们创建一个哈希表,对于每一个 x,我们首先查询哈希表中是否存在 target - x, // 然后将 x 插入到哈希表中,即可保证不会让 x 和自己匹配。 //复杂度分析: // 时间复杂度:O(N),其中 NN 是数组中的元素数量。对于每一个元素 x,我们可以 O(1)O(1) 地寻找 target - x。 // 空间复杂度:O(N),其中 NN 是数组中的元素数量。主要为哈希表的开销。 import java.util.HashMap; import java.util.Map; import java.util.Scanner; public class SumOfTwoNumbers02 { public static void main(String[] args) { Scanner input = new Scanner(System.in); System.out.print("Enter an integer array: "); String[] arr = input.next().toString().split(","); System.out.print("Enter a target: "); int target = input.nextInt(); int[] nums = new int[arr.length]; for (int i = 0;i < arr.length;i++) nums[i] = Integer.parseInt(arr[i]); int[] nums2 = twoSum(nums,target); System.out.println("[" + nums2[0] + "," + nums2[1] + "]"); } public static int[] twoSum(int[] nums,int target){ int len = nums.length; Map<Integer,Integer> hasMap = new HashMap<>(len - 1); hasMap.put(nums[0],0); for (int i = 1;i < len;i++){ int another = target - nums[i]; if (hasMap.containsKey(another)){ return new int[]{hasMap.get(another),i}; } hasMap.put(nums[i],i); } throw new IllegalArgumentException("No two sum solution"); } }
- 注意到方法一的时间复杂度较高的原因是寻找 target - x 的时间复杂度过高。因此,我们需要一种更优秀的方法,能够快速寻找数组中是否存在目标元素。如果存在,我们需要找出它的索引。使用哈希表,可以将寻找 target - x 的时间复杂度降低到从 O(N) 降低到 O(1)。这样我们创建一个哈希表,对于每一个 x,我们首先查询哈希表中是否存在 target - x,然后将 x 插入到哈希表中,即可保证不会让 x 和自己匹配。
- 复杂度分析:
- 时间复杂度:O(N),其中 N 是数组中的元素数量。对于每一个元素 x,我们可以 O(1)地寻找 target - x。
- 空间复杂度:O(N),其中 N是数组中的元素数量。主要为哈希表的开销。
- 思路及算法:
- 哈希表: