两数之和

两数之和

  • 题目描述:
    在这里插入图片描述

  • 方法一:

    • 暴力枚举
      • 思路及算法:
        • 最容易想到的方法是枚举数组中的每一个数 x,寻找数组中是否存在 target - x。当我们使用遍历整个数组的方式寻找 target - x 时,需要注意到每一个位于 x 之前的元素都已经和 x 匹配过,因此不需要再进行匹配。而每一个元素不能被使用两次,所以我们只需要在 x 后面的元素中寻找 target - x。
          package SumOfTwoNumbers;//暴力枚举:
          //        思路及算法:
          //        最容易想到的方法是枚举数组中的每一个数 x,寻找数组中是否存在 target - x。
          //        当我们使用遍历整个数组的方式寻找 target - x 时,需要注意到每一个位于 x 之前的元素都已经和 x 匹配过,
          //        因此不需要再进行匹配。而每一个元素不能被使用两次,所以我们只需要在 x 后面的元素中寻找 target - x。
          
          //复杂度分析:
          //        时间复杂度:O(N^2),其中 NN 是数组中的元素数量。最坏情况下数组中任意两个数都要被匹配一次。
          //        空间复杂度:O(1)。
          
          import java.util.Scanner;
          
          public class SumOfTwoNumbers01 {
              public static void main(String[] args) {
                  Scanner input = new Scanner(System.in);
                  System.out.print("Enter an integer array: ");
                  String[] arr = input.next().toString().split(",");
                  System.out.print("Enter a target: ");
                  int target = input.nextInt();
                  int[] nums = new int[arr.length];
                  for (int i = 0;i < arr.length;i++)
                      nums[i] = Integer.parseInt(arr[i]);
                  int[] nums2 = twoSum(nums,target);
                  System.out.println("[" + nums2[0] + "," + nums2[1] + "]");
              }
              public static int[] twoSum(int[] nums,int target){
                  int len = nums.length;
          
                  for (int i = 0;i <len - 1;i++){
                      for (int j = i + 1;j < len;j++){
                          if (nums[i] + nums[j] == target){
                              return new int[]{i,j};
                          }
                      }
                  }
                  throw  new IllegalArgumentException("No two sum solution");
              }
          }
          
          
      • 复杂度分析:
        • 时间复杂度:O(N^2),其中 NN 是数组中的元素数量。最坏情况下数组中任意两个数都要被匹配一次。
        • 空间复杂度:O(1)。
  • 方法二:

    • 哈希表:
      • 思路及算法:
        • 注意到方法一的时间复杂度较高的原因是寻找 target - x 的时间复杂度过高。因此,我们需要一种更优秀的方法,能够快速寻找数组中是否存在目标元素。如果存在,我们需要找出它的索引。使用哈希表,可以将寻找 target - x 的时间复杂度降低到从 O(N) 降低到 O(1)。这样我们创建一个哈希表,对于每一个 x,我们首先查询哈希表中是否存在 target - x,然后将 x 插入到哈希表中,即可保证不会让 x 和自己匹配。
          package SumOfTwoNumbers;//哈希表:
          //        思路及算法:
          //        注意到方法一的时间复杂度较高的原因是寻找 target - x 的时间复杂度过高。
          //        因此,我们需要一种更优秀的方法,能够快速寻找数组中是否存在目标元素。
          //        如果存在,我们需要找出它的索引。
          //        使用哈希表,可以将寻找 target - x 的时间复杂度降低到从 O(N)O(N) 降低到 O(1)O(1)。
          //        这样我们创建一个哈希表,对于每一个 x,我们首先查询哈希表中是否存在 target - x,
          //        然后将 x 插入到哈希表中,即可保证不会让 x 和自己匹配。
          
          //复杂度分析:
          //        时间复杂度:O(N),其中 NN 是数组中的元素数量。对于每一个元素 x,我们可以 O(1)O(1) 地寻找 target - x。
          //        空间复杂度:O(N),其中 NN 是数组中的元素数量。主要为哈希表的开销。
          
          
          import java.util.HashMap;
          import java.util.Map;
          import java.util.Scanner;
          
          public class SumOfTwoNumbers02 {
              public static void main(String[] args) {
                  Scanner input = new Scanner(System.in);
                  System.out.print("Enter an integer array: ");
                  String[] arr = input.next().toString().split(",");
                  System.out.print("Enter a target: ");
                  int target = input.nextInt();
                  int[] nums = new int[arr.length];
                  for (int i = 0;i < arr.length;i++)
                      nums[i] = Integer.parseInt(arr[i]);
                  int[] nums2 = twoSum(nums,target);
                  System.out.println("[" + nums2[0] + "," + nums2[1] + "]");
              }
              public static int[] twoSum(int[] nums,int target){
                  int len = nums.length;
                  Map<Integer,Integer> hasMap = new HashMap<>(len - 1);
                  hasMap.put(nums[0],0);
                  for (int i = 1;i < len;i++){
                      int another = target - nums[i];
                      if (hasMap.containsKey(another)){
                          return new int[]{hasMap.get(another),i};
                      }
                      hasMap.put(nums[i],i);
                  }
                  throw  new IllegalArgumentException("No two sum solution");
              }
          }
          
          
      • 复杂度分析:
        • 时间复杂度:O(N),其中 N 是数组中的元素数量。对于每一个元素 x,我们可以 O(1)地寻找 target - x。
        • 空间复杂度:O(N),其中 N是数组中的元素数量。主要为哈希表的开销。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值