2.博弈例子: ① 选课:研究生在选择选修课会出现有自己喜欢的课,但是这个课花费时间长,分数低,这时他们就会选择一种是去报名水课,然后旁听喜欢的课,另一种是迎难而上(这便是自己和自己的博弈) ② 有按照顺序排列的二十个球,前面19个球都为空球,最后一个球里面有博弈双方都讨厌的东西,博弈双方按顺序交替可以选择拿走一个球或者两个球,怎么保证最后一个球不是自己拿的? 我的理解:首先一个回合拿走的球数可能是2,3,4;2和4都是不确定的,如果是2,对手必须拿走1个球,如果是4对手必须拿走2个球,而3不一样,不管对手拿走几个球,我只要拿走的数量和他不一致,必定是三个球。这样,若抛除最后一个球,剩下的球是3的倍数,则选择后手出;若不是3的倍数,选择先手出,并且先手拿掉球后剩下的球数为3n+1个,这样能保证自己不拿到最后一个球。 博弈要站在对方的思想上考虑对方怎么做,对对方的操作做出反应。
3.博弈问题(首先需要定义何为最优)
4.博弈视角 ① 经验的描述性的解释:行为博弈(根据经验、行为,人们如何行动) ② 规范的解释:合作博弈论(从公平、效率等原则出发,人们如何行动) ③ 理性的解释:非合作博弈论(理性的人如何行动) ④ 演化的视角:演化博弈(放弃理性的假定,物竞天择,稳定的状态是怎么样的) ⑤ 博弈设计的视角:机制设计,算法博弈论(为了得到合意的均衡结果,如何设计博弈规则)
5.博弈论应用 ① 经济学:谈判理论、拍卖理论、机制设计、企业竞争、贸易协定、委托代理问题、信息发送等 ② 政治学:选举、策略性投票与议程操纵、联盟 ③ 社会学:习俗与社会规范、基因——文化共同演化、相关均衡 ④ 法学:合约理论 ⑤ 哲学:道德与社会正义 ⑥ 心理学:理性与有限理性、期望效用 ⑦ 军事:威慑策略、消耗战、导弹与反导弹系统 ⑧ 游戏与体育:简单摊牌博弈、国际象棋 ⑨ 计算机科学:人工智能、算法博弈 ⑩ 自动控制:微分博弈与最优控制 等等。。。。。。