正交矩阵相乘,范数不变性

记录矩阵F范数、2范数与正交矩阵相乘的范数不变性,有些地方也叫做保范性。首先明确一下正交矩阵A'A=AA'=I

先看矩阵的2范数,即矩阵A的2范数定义为A最大的奇异值。对A做奇异值分解,不妨记作A=USV',其中U、V为正交矩阵,则在A的两边分别乘以正交矩阵不影响其奇异值,比如说,在A的左边乘以正交矩阵P有PA=PUSV‘,注意到PU乘积仍然为正交矩阵,原因在于(PU)'(PU)=U'P'PU=U'(P'P)U=U'U=I=(PU)(PU)',也就是说当前的(PU)SV'是PA的奇异值分解,且与A有相同的奇异值矩阵S,所以说PA的2范数与A的2范数相同。而对于F范数,其定义如下:


既然前面得出了奇异值不变的结论,显然F范数也不变。上述内容为矩阵的F范数、2范数的正交保范性。下面对向量的2范数做一个类似的讨论。

向量的2范数为向量元素平方和开根号,证明2范数的不变性与证明元素平方和的不变性等价。方便起见,记向量为a,与正交矩阵相乘得到新向量Aa。向量元素平方和可以表示成a'a,与正交矩阵相乘后的结果为(Aa)'(Aa)=a'A'Aa=a'a,因此可得正交矩阵与向量相乘不改变向量的2范数。

总结起来说就是正交变换不改变矩阵的F范数、2范数,不改变向量的2范数。

### 奇异值保持不变的数学原理 正交矩阵与任意矩阵相乘后,奇异值保持不变的原因主要在于正交矩阵的性质及其对矩阵范数的影响。以下是详细的分析: #### 1. 正交矩阵的定义和性质 正交矩阵 \( Q \) 是一种特殊的方阵,满足以下条件: \[ Q^T Q = QQ^T = I \] 其中 \( I \) 是单位矩阵[^2]。 这一性质表明,正交矩阵不会改变向量的长度或角度关系。换句话说,正交矩阵的作用仅限于旋转或反射操作,而不会引入任何缩放效应。 #### 2. 奇异值分解的核心概念 设有一个矩阵 \( A \in \mathbb{R}^{m \times n} \),它的奇异值分解形式为: \[ A = U \Sigma V^T \] 其中: - \( U \) 和 \( V \) 是正交矩阵, - \( \Sigma \) 是一个对角矩阵,其对角线上的元素称为奇异值,表示为 \( \sigma_1, \sigma_2, ..., \sigma_r \)[^1]。 奇异值反映了矩阵 \( A \) 的“能量分布”,具体来说,它们对应着矩阵在不同方向上的拉伸程度。 #### 3. 正交矩阵作用下的奇异值变化 考虑一个新的矩阵 \( B = QA \),其中 \( Q \) 是一个正交矩阵,则有: \[ B = Q(U \Sigma V^T) = (QU)\Sigma V^T \] 注意到 \( QU \) 仍然是一个正交矩阵(因为正交矩阵之间的乘积仍为正交矩阵)。因此,新的奇异值分解形式可以写成: \[ B = U' \Sigma V^T \] 这里 \( U' = QU \) 是更新后的左奇异矩阵[^4]。 由此可见,尽管左奇异矩阵发生了变化,但对角矩阵 \( \Sigma \) 并未受到影响,这意味着原始矩阵 \( A \) 的奇异值完全保留了下来。 同理,如果右乘一个正交矩阵 \( P \),即令 \( C = AQ \),那么类似的推导过程会得出相同的结论——奇异值同样保持不变。 #### 4. 数学证明的关键点 为了进一步验证上述论断,可以从谱范数的角度出发。给定任意向量 \( x \neq 0 \),考察如下表达式的大小关系: \[ \|Ax\|_2 / \|x\|_2 \quad \text{和} \quad \|QAx\|_2 / \|x\|_2 \] 利用正交矩阵不改变欧几里得范数的事实 (\( \|Qy\|_2 = \|y\|_2 \)) 可知两者数值相同。由此可知,\( A \) 和 \( QA \) 的最大奇异值一致。类似地也可以证明其余所有奇异值均无差异。 --- ### Python 实现示例 下面提供一段简单的代码用于演示该现象: ```python import numpy as np # 定义初始矩阵 A A = np.array([[1, 2], [3, 4]]) # 构造随机正交矩阵 Q U, _, VT = np.linalg.svd(np.random.randn(*A.shape)) Q = U @ VT # 计算原矩阵和新矩阵的奇异值 svd_A = np.linalg.svd(A, compute_uv=False) svd_B = np.linalg.svd(Q @ A, compute_uv=False) print("Original Matrix Singular Values:", svd_A) print("Transformed Matrix Singular Values:", svd_B) ``` 运行此程序可以看到两组奇异值确实吻合。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值