Boost电路的参数计算及仿真

Boost电路如下:

有两种工作状态。

Q导通。

Vin对电感充电,VL=Vin。

电容C对电阻R放电,Ic=-(Vout/R),这里电流的流向与Q关断状态时相反。

Q关断。

电感和Vin加起来作用于C和R,VL=Vin-Vout,这里电感的极性与Q导通时相反。

Ic=IL-(Vout/R),电感电流=电容电流+电阻电流。

连续电流CCM模式下。

一周期内电感充电的电压和放电的电压大小相等,方向相反,即电感的伏秒平衡,可得:

Vin*D*Ts + (Vin-Vout)*(1-D)*Ts = 0

Vout = Vin / (1-D)

一周期内电容充电的电流和放电的电流大小相等,方向相反,即电容的安秒平衡,可得:

(-Vout/R)*D*Ts+(IL-Vout/R)*(1-D)*Ts = 0

IL=(Vout/R) * [1/(1-D)]

两个重要公式:V=L*(di/dt),I=C*(dv/dt)。配合电感的纹波电流ILpp和电容的纹波电压Vcpp,可以计算出L和C的值。纹波电流ILpp一般是输出电流的百分之几,纹波电压Vcpp是输出电压的百分之几。

Vin = L* [ILpp / (D*Ts)],L=(Vin*D*Ts) / ILpp

Iout = C * [Vcpp / (D*Ts)],C=Iout * Vcpp / (D*Ts),Iout=Vout/R。

可以用matlab来计算电路参数,代码如下。

clear;clc;

Vin = 5; %输入电压单位V
Vout = 10; %输出电压单位V
Fs = 5000000; %开关频率单位Hz
Iout = 1; %输出电流单位A
DeltaIL = 0.2; %电流纹波单位A
DeltaVc = 0.01; %电压纹波单位V

Ts = 1/Fs; %开关周期
duty = (Vout - Vin)/Vout;
VL = Vin;
L = (VL * duty * Ts) / DeltaIL;
C = (Iout * duty * Ts) / DeltaVc;

duty = duty * 100; %单位%
Ts = Ts * 10^6; %单位us
L = L * 10^6; %单位uH
C = C * 10^6; %单位uF

fprintf('duty  = %.1f%%\n',duty);
fprintf('Ts	  = %.1fus\n',Ts);
fprintf('L	  = %.1fuH\n',L);
fprintf('C 	  = %.1fuF\n',C);

结果如下:

Boost电路拓扑如下(仅考虑理想情况)。

仿真结果如下图所示。

可以看出,稳态情况下,B通道为输出电压10.150V,A通道为电感的电流纹波17mV / 0.1R=170mA。

此次仿真为开环控制,所以输出电压不会很准确,而且为会随着负载的变化而变化,因此,必须加入闭环。

上图为电压模式控制,建议在采样电阻后,加入同相电压跟随器,可以把运放的偏置电流的影响降低,从而得到的输出电压较为精准。再把补偿器改为Type III型补偿。

由于multisim仿真闭环并不好用,其中的电路参数可以自行修改。

需要注意的是,这里的CCM模式是一种小信号模型,也就是电路工作在稳态时,纹波很小的时候才能适用。小信号模型有CCM、DCM和CRM三种,也要分别考虑。

boost电路小信号模型推算思路。

3个基本假设:低频假设,小纹波假设,小信号假设。

两个重要公式:V=L*(di/dt),I=C*(dv/dt)。

1、使用平均变量,根据两个重要公式计算一周期内(ton+toff)电感电压、电容电流。

2、分离扰动和线性化。将平均变量替换为直流分量+交流分量,去掉直流分量和高阶交流分量,留下低阶交流分量。

得到以下小信号模型:

化简后,可以得到:

得到的传递函数,导入Matlab中,配合sisotool,可完成环路补偿。

### Boost电路小信号模型分析与设计 #### 3.1 小信号建模的前提条件 在进行Boost电路的小信号建模之前,需假设工作于连续导通模式(CCM),即电感电流始终不降为零。此条件下,可以利用平均开关模型来简化实际的开关过程,从而便于后续的线性化处理[^1]。 #### 3.2 平均变量计算 对于处于稳定状态下的Boost转换器而言,其输出电压\(V_{out}\)、输入电压\(V_{in}\)以及占空比D之间存在如下关系\[ V_{out}=V_{in}/(1-D)\]。基于这一静态特性表达式,在考虑动态变化时,则引入了相应的增量表示方法,即将各物理量分解成直流分量加上交流小扰动的形式,例如\(v(t)=V+\tilde{v}(t)\)[^2]。 #### 3.3 扰动分离 通过上述方式定义好各个参量之后,下一步就是针对具体的拓扑结构写出对应的微分方程组并加入扰动项。以同步型BOOST为例,当主开关管导通而续流二极管截止期间内有: \[ \left\{ \begin{array}{l} {i_{dc}}={c_{dc}}{\rm d}({v_{{cdc}}}+{\widetilde v})/{\rm dt}+(i_l+{\widetilde i}) \\ {v_{dc}}=(i_l+{\widetilde i})r_l+l{\rm d}(i_l+{\widetilde i})/{\rm dt}\\ {v_{dc}}=({v_{{cdc}}}+{\widetilde v})+r_c {\rm d} ({v_{{cdc}}}+{\widetilde v}) / {\rm dt} \end{array} \right. \] 其中带有波浪号的部分代表围绕着操作点产生的小幅波动成分;未加修饰符者则对应稳态解部分。 #### 3.4 线性化处理 完成以上准备工作后就可以着手对方程式实施泰勒展开近似,并忽略高阶无穷小项得到最终的一阶线性常系数ODEs描述形式。具体到本案例中会涉及到对非线性的乘积项做局部替代等技巧应用,目的是让整个系统能够被表述成为矩阵-向量乘积的标准样式以便进一步借助传递函数理论开展频域内的性能评估活动。 #### 3.5 拉普拉斯变换 最后一步是对经过线性化的差分/积分运算运用拉普拉斯变换工具将其映射至S平面之上形成易于解析求解的新表征——即所谓的“小信号模型”。此时不仅可以直接读取增益裕度相角裕度之类的重要指标而且也为控制器参数整定提供了坚实的数学基础支持。 ```matlab % MATLAB/Simulink代码片段用于验证所构建的小信号模型准确性 G=tf([C], [T*L*C T*(R+C*R)+L 1]); margin(G); bode(G); ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值