三、递推法
递推法是利用问题本身所具有的一种递推关系求问题解的一种方法。设要求问题规模为N的解,当N=1时,解或为已知,或能非常方便地得到解。能采用递推法构造算法的问题有重要的递推性质,即当得到问题规模为i-1的解后,由问题的递推性质,能从已求得的规模为1,2,…,i-1的一系列解,构造出问题规模为I的解。这样,程序可从i=0或i=1出发,重复地,由已知至i-1规模的解,通过递推,获得规模为i的解,直至得到规模为N的解。 【问题】 阶乘计算 问题描述:编写程序,对给定的n(n≦100),计算并输出k的阶乘k!(k=1,2,…,n)的全部有效数字。 由于要求的整数可能大大超出一般整数的位数,程序用一维数组存储长整数,存储长整数数组的每个元素只存储长整数的一位数字。如有m位成整数N用数组a[ ]存储: N=a[m]×10m-1+a[m-1]×10m-2+ … +a[2]×101+a[1]×100 并用a[0]存储长整数N的位数m,即a[0]=m。按上述约定,数组的每个元素存储k的阶乘k!的一位数字,并从低位到高位依次存于数组的第二个元素、第三个元素……。例如,5!=120,在数组中的存储形式为: 3 0 2 1 …… 首元素3表示长整数是一个3位数,接着是低位到高位依次是0、2、1,表示成整数120。 计算阶乘k!可采用对已求得的阶乘(k-1)!连续累加k-1次后求得。例如,已知4!=24,计算5!,可对原来的24累加4次24后得到120。细节见以下程序。 # include <stdio.h> # include <malloc.h> # define MAXN 1000 void pnext(int a[ ],int k) { int *b,m=a[0],i,j,r,carry; b=(int * ) malloc(sizeof(int)* (m+1)); for ( i=1;i<=m;i++) b[i]=a[i]; for ( j=1;j<=k;j++) { for ( carry=0,i=1;i<=m;i++) { r=(i<a[0]?a[i]+b[i]:a[i])+carry; a[i]=r%10; carry=r/10; } if (carry) a[++m]=carry; } free(b); a[0]=m; }
void write(int *a,int k) { int i; printf(“%4d!=”,k); for (i=a[0];i>0;i--) printf(“%d”,a[i]); printf(“/n/n”); }
void main() { int a[MAXN],n,k; printf(“Enter the number n: “); scanf(“%d”,&n); a[0]=1; a[1]=1; write(a,1); for (k=2;k<=n;k++) { pnext(a,k); write(a,k); getchar(); } } 四、递归
递归是设计和描述算法的一种有力的工具,由于它在复杂算法的描述中被经常采用,为此在进一步介绍其他算法设计方法之前先讨论它。 能采用递归描述的算法通常有这样的特征:为求解规模为N的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模较大问题的解。特别地,当规模N=1时,能直接得解。 【问题】 编写计算斐波那契(Fibonacci)数列的第n项函数fib(n)。 斐波那契数列为:0、1、1、2、3、……,即: fib(0)=0; fib(1)=1; fib(n)=fib(n-1)+fib(n-2) (当n>1时)。 写成递归函数有: int fib(int n) { if (n==0) return 0; if (n==1) return 1; if (n>1) return fib(n-1)+fib(n-2); } 递归算法的执行过程分递推和回归两个阶段。在递推阶段,把较复杂的问题(规模为n)的求解推到比原问题简单一些的问题(规模小于n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是说,为计算fib(n),必须先计算fib(n-1)和fib(n-2),而计算fib(n-1)和fib(n-2),又必须先计算fib(n-3)和fib(n-4)。依次类推,直至计算fib(1)和fib(0),分别能立即得到结果1和0。在递推阶段,必须要有终止递归的情况。例如在函数fib中,当n为1和0的情况。 在回归阶段,当获得最简单情况的解后,逐级返回,依次得到稍复杂问题的解,例如得到fib(1)和fib(0)后,返回得到fib(2)的结果,……,在得到了fib(n-1)和fib(n-2)的结果后,返回得到fib(n)的结果。 在编写递归函数时要注意,函数中的局部变量和参数知识局限于当前调用层,当递推进入“简单问题”层时,原来层次上的参数和局部变量便被隐蔽起来。在一系列“简单问题”层,它们各有自己的参数和局部变量。 由于递归引起一系列的函数调用,并且可能会有一系列的重复计算,递归算法的执行效率相对较低。当某个递归算法能较方便地转换成递推算法时,通常按递推算法编写程序。例如上例计算斐波那契数列的第n项的函数fib(n)应采用递推算法,即从斐波那契数列的前两项出发,逐次由前两项计算出下一项,直至计算出要求的第n项。 【问题】 组合问题 问题描述:找出从自然数1、2、……、n中任取r个数的所有组合。例如n=5,r=3的所有组合为: (1)5、4、3 (2)5、4、2 (3)5、4、1 (4)5、3、2 (5)5、3、1 (6)5、2、1 (7)4、3、2 (8)4、3、1 (9)4、2、1 (10)3、2、1 分析所列的10个组合,可以采用这样的递归思想来考虑求组合函数的算法。设函数为void comb(int m,int k)为找出从自然数1、2、……、m中任取k个数的所有组合。当组合的第一个数字选定时,其后的数字是从余下的m-1个数中取k-1数的组合。这就将求m个数中取k个数的组合问题转化成求m-1个数中取k-1个数的组合问题。设函数引入工作数组a[ ]存放求出的组合的数字,约定函数将确定的k个数字组合的第一个数字放在a[k]中,当一个组合求出后,才将a[ ]中的一个组合输出。第一个数可以是m、m-1、……、k,函数将确定组合的第一个数字放入数组后,有两种可能的选择,因还未去顶组合的其余元素,继续递归去确定;或因已确定了组合的全部元素,输出这个组合。细节见以下程序中的函数comb。 【程序】 # include <stdio.h> # define MAXN 100 int a[MAXN]; void comb(int m,int k) { int i,j; for (i=m;i>=k;i--) { a[k]=i; if (k>1) comb(i-1,k-1); else { for (j=a[0];j>0;j--) printf(“%4d”,a[j]); printf(“/n”); } } }
void main() { a[0]=3; comb(5,3); } 【问题】 背包问题 问题描述:有不同价值、不同重量的物品n件,求从这n件物品中选取一部分物品的选择方案,使选中物品的总重量不超过指定的限制重量,但选中物品的价值之和最大。 设n件物品的重量分别为w0、w1、…、wn-1,物品的价值分别为v0、v1、…、vn-1。采用递归寻找物品的选择方案。设前面已有了多种选择的方案,并保留了其中总价值最大的方案于数组option[ ],该方案的总价值存于变量maxv。当前正在考察新方案,其物品选择情况保存于数组cop[ ]。假定当前方案已考虑了前i-1件物品,现在要考虑第i件物品;当前方案已包含的物品的重量之和为tw;至此,若其余物品都选择是可能的话,本方案能达到的总价值的期望值为tv。算法引入tv是当一旦当前方案的总价值的期望值也小于前面方案的总价值maxv时,继续考察当前方案变成无意义的工作,应终止当前方案,立即去考察下一个方案。因为当方案的总价值不比maxv大时,该方案不会被再考察,这同时保证函数后找到的方案一定会比前面的方案更好。 对于第i件物品的选择考虑有两种可能: (1) 考虑物品i被选择,这种可能性仅当包含它不会超过方案总重量限制时才是可行的。选中后,继续递归去考虑其余物品的选择。 (2) 考虑物品i不被选择,这种可能性仅当不包含物品i也有可能会找到价值更大的方案的情况。 按以上思想写出递归算法如下: try(物品i,当前选择已达到的重量和,本方案可能达到的总价值tv) { /*考虑物品i包含在当前方案中的可能性*/ if(包含物品i是可以接受的) { 将物品i包含在当前方案中; if (i<n-1) try(i+1,tw+物品i的重量,tv); else /*又一个完整方案,因为它比前面的方案好,以它作为最佳方案*/ 以当前方案作为临时最佳方案保存; 恢复物品i不包含状态; } /*考虑物品i不包含在当前方案中的可能性*/ if (不包含物品i仅是可男考虑的) if (i<n-1) try(i+1,tw,tv-物品i的价值); else /*又一个完整方案,因它比前面的方案好,以它作为最佳方案*/ 以当前方案作为临时最佳方案保存; } 为了理解上述算法,特举以下实例。设有4件物品,它们的重量和价值见表: 物品 0 1 2 3 重量 5 3 2 1 价值 4 4 3 1
并设限制重量为7。则按以上算法,下图表示找解过程。由图知,一旦找到一个解,算法就进一步找更好的佳。如能判定某个查找分支不会找到更好的解,算法不会在该分支继续查找,而是立即终止该分支,并去考察下一个分支。
按上述算法编写函数和程序如下: 【程序】 # include <stdio.h> # define N 100 double limitW,totV,maxV; int option[N],cop[N]; struct { double weight; double value; }a[N]; int n; void find(int i,double tw,double tv) { int k; /*考虑物品i包含在当前方案中的可能性*/ if (tw+a[i].weight<=limitW) { cop[i]=1; if (i<n-1) find(i+1,tw+a[i].weight,tv); else { for (k=0;k<n;k++) option[k]=cop[k]; maxv=tv; } cop[i]=0; } /*考虑物品i不包含在当前方案中的可能性*/ if (tv-a[i].value>maxV) if (i<n-1) find(i+1,tw,tv-a[i].value); else { for (k=0;k<n;k++) option[k]=cop[k]; maxv=tv-a[i].value; } }
void main() { int k; double w,v; printf(“输入物品种数/n”); scanf((“%d”,&n); printf(“输入各物品的重量和价值/n”); for (totv=0.0,k=0;k<n;k++) { scanf(“%1f%1f”,&w,&v); a[k].weight=w; a[k].value=v; totV+=V; } printf(“输入限制重量/n”); scanf(“%1f”,&limitV); maxv=0.0; for (k=0;k<n;k++) cop[k]=0; find(0,0.0,totV); for (k=0;k<n;k++) if (option[k]) printf(“%4d”,k+1); printf(“/n总价值为%.2f/n”,maxv); } 作为对比,下面以同样的解题思想,考虑非递归的程序解。为了提高找解速度,程序不是简单地逐一生成所有候选解,而是从每个物品对候选解的影响来形成值得进一步考虑的候选解,一个候选解是通过依次考察每个物品形成的。对物品i的考察有这样几种情况:当该物品被包含在候选解中依旧满足解的总重量的限制,该物品被包含在候选解中是应该继续考虑的;反之,该物品不应该包括在当前正在形成的候选解中。同样地,仅当物品不被包括在候选解中,还是有可能找到比目前临时最佳解更好的候选解时,才去考虑该物品不被包括在候选解中;反之,该物品不包括在当前候选解中的方案也不应继续考虑。对于任一值得继续考虑的方案,程序就去进一步考虑下一个物品。 【程序】 # include <stdio.h> # define N 100 double limitW; int cop[N]; struct ele { double weight; double value; } a[N]; int k,n; struct { int flg; double tw; double tv; }twv[N]; void next(int i,double tw,double tv) { twv[i].flg=1; twv[i].tw=tw; twv[i].tv=tv; } double find(struct ele *a,int n) { int i,k,f; double maxv,tw,tv,totv; maxv=0; for (totv=0.0,k=0;k<n;k++) totv+=a[k].value; next(0,0.0,totv); i=0; While (i>=0) { f=twv[i].flg; tw=twv[i].tw; tv=twv[i].tv; switch(f) { case 1: twv[i].flg++; if (tw+a[i].weight<=limitW) if (i<n-1) { next(i+1,tw+a[i].weight,tv); i++; } else { maxv=tv; for (k=0;k<n;k++) cop[k]=twv[k].flg!=0; } break; case 0: i--; break; default: twv[i].flg=0; if (tv-a[i].value>maxv) if (i<n-1) { next(i+1,tw,tv-a[i].value); i++; } else { maxv=tv-a[i].value; for (k=0;k<n;k++) cop[k]=twv[k].flg!=0; } break; } } return maxv; }
void main() { double maxv; printf(“输入物品种数/n”); scanf((“%d”,&n); printf(“输入限制重量/n”); scanf(“%1f”,&limitW); printf(“输入各物品的重量和价值/n”); for (k=0;k<n;k++) scanf(“%1f%1f”,&a[k].weight,&a[k].value); maxv=find(a,n); printf(“/n选中的物品为/n”); for (k=0;k<n;k++) if (option[k]) printf(“%4d”,k+1); printf(“/n总价值为%.2f/n”,maxv); } 五、回溯法
回溯法也称为试探法,该方法首先暂时放弃关于问题规模大小的限制,并将问题的候选解按某种顺序逐一枚举和检验。当发现当前候选解不可能是解时,就选择下一个候选解;倘若当前候选解除了还不满足问题规模要求外,满足所有其他要求时,继续扩大当前候选解的规模,并继续试探。如果当前候选解满足包括问题规模在内的所有要求时,该候选解就是问题的一个解。在回溯法中,放弃当前候选解,寻找下一个候选解的过程称为回溯。扩大当前候选解的规模,以继续试探的过程称为向前试探。 1、回溯法的一般描述 可用回溯法求解的问题P,通常要能表达为:对于已知的由n元组(x1,x2,…,xn)组成的一个状态空间E={(x1,x2,…,xn)∣xi∈Si ,i=1,2,…,n},给定关于n元组中的一个分量的一个约束集D,要求E中满足D的全部约束条件的所有n元组。其中Si是分量xi的定义域,且 |Si| 有限,i=1,2,…,n。我们称E中满足D的全部约束条件的任一n元组为问题P的一个解。 解问题P的最朴素的方法就是枚举法,即对E中的所有n元组逐一地检测其是否满足D的全部约束,若满足,则为问题P的一个解。但显然,其计算量是相当大的。 我们发现,对于许多问题,所给定的约束集D具有完备性,即i元组(x1,x2,…,xi)满足D中仅涉及到x1,x2,…,xi的所有约束意味着j(j<i)元组(x1,x2,…,xj)一定也满足D中仅涉及到x1,x2,…,xj的所有约束,i=1,2,…,n。换句话说,只要存在0≤j≤n-1,使得(x1,x2,…,xj)违反D中仅涉及到x1,x2,…,xj的约束之一,则以(x1,x2,…,xj)为前缀的任何n元组(x1,x2,…,xj,xj+1,…,xn)一定也违反D中仅涉及到x1,x2,…,xi的一个约束,n≥i>j。因此,对于约束集D具有完备性的问题P,一旦检测断定某个j元组(x1,x2,…,xj)违反D中仅涉及x1,x2,…,xj的一个约束,就可以肯定,以(x1,x2,…,xj)为前缀的任何n元组(x1,x2,…,xj,xj+1,…,xn)都不会是问题P的解,因而就不必去搜索它们、检测它们。回溯法正是针对这类问题,利用这类问题的上述性质而提出来的比枚举法效率更高的算法。 回溯法首先将问题P的n元组的状态空间E表示成一棵高为n的带权有序树T,把在E中求问题P的所有解转化为在T中搜索问题P的所有解。树T类似于检索树,它可以这样构造: 设Si中的元素可排成xi(1) ,xi(2) ,…,xi(mi-1) ,|Si| =mi,i=1,2,…,n。从根开始,让T的第I层的每一个结点都有mi个儿子。这mi个儿子到它们的双亲的边,按从左到右的次序,分别带权xi+1(1) ,xi+1(2) ,…,xi+1(mi) ,i=0,1,2,…,n-1。照这种构造方式,E中的一个n元组(x1,x2,…,xn)对应于T中的一个叶子结点,T的根到这个叶子结点的路径上依次的n条边的权分别为x1,x2,…,xn,反之亦然。另外,对于任意的0≤i≤n-1,E中n元组(x1,x2,…,xn)的一个前缀I元组(x1,x2,…,xi)对应于T中的一个非叶子结点,T的根到这个非叶子结点的路径上依次的I条边的权分别为x1,x2,…,xi,反之亦然。特别,E中的任意一个n元组的空前缀(),对应于T的根。 因而,在E中寻找问题P的一个解等价于在T中搜索一个叶子结点,要求从T的根到该叶子结点的路径上依次的n条边相应带的n个权x1,x2,…,xn满足约束集D的全部约束。在T中搜索所要求的叶子结点,很自然的一种方式是从根出发,按深度优先的策略逐步深入,即依次搜索满足约束条件的前缀1元组(x1i)、前缀2元组(x1,x2)、…,前缀I元组(x1,x2,…,xi),…,直到i=n为止。 在回溯法中,上述引入的树被称为问题P的状态空间树;树T上任意一个结点被称为问题P的状态结点;树T上的任意一个叶子结点被称为问题P的一个解状态结点;树T上满足约束集D的全部约束的任意一个叶子结点被称为问题P的一个回答状态结点,它对应于问题P的一个解。 【问题】 组合问题 问题描述:找出从自然数1、2、……、n中任取r个数的所有组合。 例如n=5,r=3的所有组合为: (1)1、2、3 (2)1、2、4 (3)1、2、5 (4)1、3、4 (5)1、3、5 (6)1、4、5 (7)2、3、4 (8)2、3、5 (9)2、4、5 (10)3、4、5 则该问题的状态空间为: E={(x1,x2,x3)∣xi∈S ,i=1,2,3 } 其中:S={1,2,3,4,5} 约束集为: x1<x2<x3 显然该约束集具有完备性。
2、回溯法的方法 对于具有完备约束集D的一般问题P及其相应的状态空间树T,利用T的层次结构和D的完备性,在T中搜索问题P的所有解的回溯法可以形象地描述为: 从T的根出发,按深度优先的策略,系统地搜索以其为根的子树中可能包含着回答结点的所有状态结点,而跳过对肯定不含回答结点的所有子树的搜索,以提高搜索效率。具体地说,当搜索按深度优先策略到达一个满足D中所有有关约束的状态结点时,即“激活”该状态结点,以便继续往深层搜索;否则跳过对以该状态结点为根的子树的搜索,而一边逐层地向该状态结点的祖先结点回溯,一边“杀死”其儿子结点已被搜索遍的祖先结点,直到遇到其儿子结点未被搜索遍的祖先结点,即转向其未被搜索的一个儿子结点继续搜索。 在搜索过程中,只要所激活的状态结点又满足终结条件,那么它就是回答结点,应该把它输出或保存。由于在回溯法求解问题时,一般要求出问题的所有解,因此在得到回答结点后,同时也要进行回溯,以便得到问题的其他解,直至回溯到T的根且根的所有儿子结点均已被搜索过为止。 例如在组合问题中,从T的根出发深度优先遍历该树。当遍历到结点(1,2)时,虽然它满足约束条件,但还不是回答结点,则应继续深度遍历;当遍历到叶子结点(1,2,5)时,由于它已是一个回答结点,则保存(或输出)该结点,并回溯到其双亲结点,继续深度遍历;当遍历到结点(1,5)时,由于它已是叶子结点,但不满足约束条件,故也需回溯。 3、回溯法的一般流程和技术 在用回溯法求解有关问题的过程中,一般是一边建树,一边遍历该树。在回溯法中我们一般采用非递归方法。下面,我们给出回溯法的非递归算法的一般流程:
在用回溯法求解问题,也即在遍历状态空间树的过程中,如果采用非递归方法,则我们一般要用到栈的数据结构。这时,不仅可以用栈来表示正在遍历的树的结点,而且可以很方便地表示建立孩子结点和回溯过程。 例如在组合问题中,我们用一个一维数组Stack[ ]表示栈。开始栈空,则表示了树的根结点。如果元素1进栈,则表示建立并遍历(1)结点;这时如果元素2进栈,则表示建立并遍历(1,2)结点;元素3再进栈,则表示建立并遍历(1,2,3)结点。这时可以判断它满足所有约束条件,是问题的一个解,输出(或保存)。这时只要栈顶元素(3)出栈,即表示从结点(1,2,3)回溯到结点(1,2)。 【问题】 组合问题 问题描述:找出从自然数1,2,…,n中任取r个数的所有组合。 采用回溯法找问题的解,将找到的组合以从小到大顺序存于a[0],a[1],…,a[r-1]中,组合的元素满足以下性质: (1) a[i+1]>a[i],后一个数字比前一个大; (2) a[i]-i<=n-r+1。 按回溯法的思想,找解过程可以叙述如下: 首先放弃组合数个数为r的条件,候选组合从只有一个数字1开始。因该候选解满足除问题规模之外的全部条件,扩大其规模,并使其满足上述条件(1),候选组合改为1,2。继续这一过程,得到候选组合1,2,3。该候选解满足包括问题规模在内的全部条件,因而是一个解。在该解的基础上,选下一个候选解,因a[2]上的3调整为4,以及以后调整为5都满足问题的全部要求,得到解1,2,4和1,2,5。由于对5不能再作调整,就要从a[2]回溯到a[1],这时,a[1]=2,可以调整为3,并向前试探,得到解1,3,4。重复上述向前试探和向后回溯,直至要从a[0]再回溯时,说明已经找完问题的全部解。按上述思想写成程序如下: 【程序】 # define MAXN 100 int a[MAXN]; void comb(int m,int r) { int i,j; i=0; a[i]=1; do { if (a[i]-i<=m-r+1 { if (i==r-1) { for (j=0;j<r;j++) printf(“%4d”,a[j]); printf(“/n”); } a[i]++; continue; } else { if (i==0) return; a[--i]++; } } while (1) }
main() { comb(5,3); } 【问题】 填字游戏 问题描述:在3×3个方格的方阵中要填入数字1到N(N≥10)内的某9个数字,每个方格填一个整数,似的所有相邻两个方格内的两个整数之和为质数。试求出所有满足这个要求的各种数字填法。 可用试探发找到问题的解,即从第一个方格开始,为当前方格寻找一个合理的整数填入,并在当前位置正确填入后,为下一方格寻找可填入的合理整数。如不能为当前方格找到一个合理的可填证书,就要回退到前一方格,调整前一方格的填入数。当第九个方格也填入合理的整数后,就找到了一个解,将该解输出,并调整第九个的填入的整数,寻找下一个解。 为找到一个满足要求的9个数的填法,从还未填一个数开始,按某种顺序(如从小到大的顺序)每次在当前位置填入一个整数,然后检查当前填入的整数是否能满足要求。在满足要求的情况下,继续用同样的方法为下一方格填入整数。如果最近填入的整数不能满足要求,就改变填入的整数。如对当前方格试尽所有可能的整数,都不能满足要求,就得回退到前一方格,并调整前一方格填入的整数。如此重复执行扩展、检查或调整、检查,直到找到一个满足问题要求的解,将解输出。 回溯法找一个解的算法: { int m=0,ok=1; int n=8; do{ if (ok) 扩展; else 调整; ok=检查前m个整数填放的合理性; } while ((!ok||m!=n)&&(m!=0)) if (m!=0) 输出解; else 输出无解报告; } 如果程序要找全部解,则在将找到的解输出后,应继续调整最后位置上填放的整数,试图去找下一个解。相应的算法如下: 回溯法找全部解的算法: { int m=0,ok=1; int n=8; do{ if (ok) { if (m==n) { 输出解; 调整; } else 扩展; } else 调整; ok=检查前m个整数填放的合理性; } while (m!=0); } 为了确保程序能够终止,调整时必须保证曾被放弃过的填数序列不会再次实验,即要求按某种有许模型生成填数序列。给解的候选者设定一个被检验的顺序,按这个顺序逐一形成候选者并检验。从小到大或从大到小,都是可以采用的方法。如扩展时,先在新位置填入整数1,调整时,找当前候选解中下一个还未被使用过的整数。将上述扩展、调整、检验都编写成程序,细节见以下找全部解的程序。 【程序】 # include <stdio.h> # define N 12 void write(int a[ ]) { int i,j; for (i=0;i<3;i++) { for (j=0;j<3;j++) printf(“%3d”,a[3*i+j]); printf(“/n”); } scanf(“%*c”); }
int b[N+1]; int a[10]; int isprime(int m) { int i; int primes[ ]={2,3,5,7,11,17,19,23,29,-1}; if (m==1||m%2=0) return 0; for (i=0;primes[i]>0;i++) if (m==primes[i]) return 1; for (i=3;i*i<=m;) { if (m%i==0) return 0; i+=2; } return 1; }
int checkmatrix[ ][3]={ {-1},{0,-1},{1,-1},{0,-1},{1,3,-1}, {2,4,-1},{3,-1},{4,6,-1},{5,7,-1}}; int selectnum(int start) { int j; for (j=start;j<=N;j++) if (b[j]) return j return 0; }
int check(int pos) { int i,j; if (pos<0) return 0; for (i=0;(j=checkmatrix[pos][i])>=0;i++) if (!isprime(a[pos]+a[j]) return 0; return 1; }
int extend(int pos) { a[++pos]=selectnum(1); b[a][pos]]=0; return pos; }
int change(int pos) { int j; while (pos>=0&&(j=selectnum(a[pos]+1))==0) b[a[pos--]]=1; if (pos<0) return –1 b[a[pos]]=1; a[pos]=j; b[j]=0; return pos; }
void find() { int ok=0,pos=0; a[pos]=1; b[a[pos]]=0; do { if (ok) if (pos==8) { write(a); pos=change(pos); } else pos=extend(pos); else pos=change(pos); ok=check(pos); } while (pos>=0) }
void main() { int i; for (i=1;i<=N;i++) b[i]=1; find(); } 【问题】 n皇后问题 问题描述:求出在一个n×n的棋盘上,放置n个不能互相捕捉的国际象棋“皇后”的所有布局。 这是来源于国际象棋的一个问题。皇后可以沿着纵横和两条斜线4个方向相互捕捉。如图所示,一个皇后放在棋盘的第4行第3列位置上,则棋盘上凡打“×”的位置上的皇后就能与这个皇后相互捕捉。 1 2 3 4 5 6 7 8 × × × × × × × × × × Q × × × × × × × × × × × × × × × 从图中可以得到以下启示:一个合适的解应是在每列、每行上只有一个皇后,且一条斜线上也只有一个皇后。 求解过程从空配置开始。在第1列至第m列为合理配置的基础上,再配置第m+1列,直至第n列配置也是合理时,就找到了一个解。接着改变第n列配置,希望获得下一个解。另外,在任一列上,可能有n种配置。开始时配置在第1行,以后改变时,顺次选择第2行、第3行、…、直到第n行。当第n行配置也找不到一个合理的配置时,就要回溯,去改变前一列的配置。得到求解皇后问题的算法如下: { 输入棋盘大小值n; m=0; good=1; do { if (good) if (m==n) { 输出解; 改变之,形成下一个候选解; } else 扩展当前候选接至下一列; else 改变之,形成下一个候选解; good=检查当前候选解的合理性; } while (m!=0); } 在编写程序之前,先确定边式棋盘的数据结构。比较直观的方法是采用一个二维数组,但仔细观察就会发现,这种表示方法给调整候选解及检查其合理性带来困难。更好的方法乃是尽可能直接表示那些常用的信息。对于本题来说,“常用信息”并不是皇后的具体位置,而是“一个皇后是否已经在某行和某条斜线合理地安置好了”。因在某一列上恰好放一个皇后,引入一个一维数组(col[ ]),值col[i]表示在棋盘第i列、col[i]行有一个皇后。例如:col[3]=4,就表示在棋盘的第3列、第4行上有一个皇后。另外,为了使程序在找完了全部解后回溯到最初位置,设定col[0]的初值为0当回溯到第0列时,说明程序已求得全部解,结束程序运行。 为使程序在检查皇后配置的合理性方面简易方便,引入以下三个工作数组: (1) 数组a[ ],a[k]表示第k行上还没有皇后; (2) 数组b[ ],b[k]表示第k列右高左低斜线上没有皇后; (3) 数组 c[ ],c[k]表示第k列左高右低斜线上没有皇后; 棋盘中同一右高左低斜线上的方格,他们的行号与列号之和相同;同一左高右低斜线上的方格,他们的行号与列号之差均相同。 初始时,所有行和斜线上均没有皇后,从第1列的第1行配置第一个皇后开始,在第m列col[m]行放置了一个合理的皇后后,准备考察第m+1列时,在数组a[ ]、b[ ]和c[ ]中为第m列,col[m]行的位置设定有皇后标志;当从第m列回溯到第m-1列,并准备调整第m-1列的皇后配置时,清除在数组a[ ]、b[ ]和c[ ]中设置的关于第m-1列,col[m-1]行有皇后的标志。一个皇后在m列,col[m]行方格内配置是合理的,由数组a[ ]、b[ ]和c[ ]对应位置的值都为1来确定。细节见以下程序: 【程序】 # include <stdio.h> # include <stdlib.h> # define MAXN 20 int n,m,good; int col[MAXN+1],a[MAXN+1],b[2*MAXN+1],c[2*MAXN+1];
void main() { int j; char awn; printf(“Enter n: “); scanf(“%d”,&n); for (j=0;j<=n;j++) a[j]=1; for (j=0;j<=2*n;j++) cb[j]=c[j]=1; m=1; col[1]=1; good=1; col[0]=0; do { if (good) if (m==n) { printf(“列/t行”); for (j=1;j<=n;j++) printf(“%3d/t%d/n”,j,col[j]); printf(“Enter a character (Q/q for exit)!/n”); scanf(“%c”,&awn); if (awn==’Q’||awn==’q’) exit(0); while (col[m]==n) { m--; a[col[m]]=b[m+col[m]]=c[n+m-col[m]]=1; } col[m]++; } else { a[col[m]]=b[m+col[m]]=c[n+m-col[m]]=0; col[++m]=1; } else { while (col[m]==n) { m--; a[col[m]]=b[m+col[m]]=c[n+m-col[m]]=1; } col[m]++; } good=a[col[m]]&&b[m+col[m]]&&c[n+m-col[m]]; } while (m!=0); } 试探法找解算法也常常被编写成递归函数,下面两程序中的函数queen_all()和函数queen_one()能分别用来解皇后问题的全部解和一个解。 【程序】 # include <stdio.h> # include <stdlib.h> # define MAXN 20 int n; int col[MAXN+1],a[MAXN+1],b[2*MAXN+1],c[2*MAXN+1]; void main() { int j; printf(“Enter n: “); scanf(“%d”,&n); for (j=0;j<=n;j++) a[j]=1; for (j=0;j<=2*n;j++) cb[j]=c[j]=1; queen_all(1,n); }
void queen_all(int k,int n) { int i,j; char awn; for (i=1;i<=n;i++) if (a[i]&&b[k+i]&&c[n+k-i]) { col[k]=i; a[i]=b[k+i]=c[n+k-i]=0; if (k==n) { printf(“列/t行”); for (j=1;j<=n;j++) printf(“%3d/t%d/n”,j,col[j]); printf(“Enter a character (Q/q for exit)!/n”); scanf(“%c”,&awn); if (awn==’Q’||awn==’q’) exit(0); } queen_all(k+1,n); a[i]=b[k+i]=c[n+k-i]; } } 采用递归方法找一个解与找全部解稍有不同,在找一个解的算法中,递归算法要对当前候选解最终是否能成为解要有回答。当它成为最终解时,递归函数就不再递归试探,立即返回;若不能成为解,就得继续试探。设函数queen_one()返回1表示找到解,返回0表示当前候选解不能成为解。细节见以下函数。 【程序】 # define MAXN 20 int n; int col[MAXN+1],a[MAXN+1],b[2*MAXN+1],c[2*MAXN+1]; int queen_one(int k,int n) { int i,found; i=found=0; While (!found&&i<n) { i++; if (a[i]&&b[k+i]&&c[n+k-i]) { col[k]=i; a[i]=b[k+i]=c[n+k-i]=0; if (k==n) return 1; else found=queen_one(k+1,n); a[i]=b[k+i]=c[n+k-i]=1; } } return found; }
六、贪婪法
贪婪法是一种不追求最优解,只希望得到较为满意解的方法。贪婪法一般可以快速得到满意的解,因为它省去了为找最优解要穷尽所有可能而必须耗费的大量时间。贪婪法常以当前情况为基础作最优选择,而不考虑各种可能的整体情况,所以贪婪法不要回溯。 例如平时购物找钱时,为使找回的零钱的硬币数最少,不考虑找零钱的所有各种发表方案,而是从最大面值的币种开始,按递减的顺序考虑各币种,先尽量用大面值的币种,当不足大面值币种的金额时才去考虑下一种较小面值的币种。这就是在使用贪婪法。这种方法在这里总是最优,是因为银行对其发行的硬币种类和硬币面值的巧妙安排。如只有面值分别为1、5和11单位的硬币,而希望找回总额为15单位的硬币。按贪婪算法,应找1个11单位面值的硬币和4个1单位面值的硬币,共找回5个硬币。但最优的解应是3个5单位面值的硬币。 【问题】 装箱问题 问题描述:装箱问题可简述如下:设有编号为0、1、…、n-1的n种物品,体积分别为v0、v1、…、vn-1。将这n种物品装到容量都为V的若干箱子里。约定这n种物品的体积均不超过V,即对于0≤i<n,有0<vi≤V。不同的装箱方案所需要的箱子数目可能不同。装箱问题要求使装尽这n种物品的箱子数要少。 若考察将n种物品的集合分划成n个或小于n个物品的所有子集,最优解就可以找到。但所有可能划分的总数太大。对适当大的n,找出所有可能的划分要花费的时间是无法承受的。为此,对装箱问题采用非常简单的近似算法,即贪婪法。该算法依次将物品放到它第一个能放进去的箱子中,该算法虽不能保证找到最优解,但还是能找到非常好的解。不失一般性,设n件物品的体积是按从大到小排好序的,即有v0≥v1≥…≥vn-1。如不满足上述要求,只要先对这n件物品按它们的体积从大到小排序,然后按排序结果对物品重新编号即可。装箱算法简单描述如下: { 输入箱子的容积; 输入物品种数n; 按体积从大到小顺序,输入各物品的体积; 预置已用箱子链为空; 预置已用箱子计数器box_count为0; for (i=0;i<n;i++) { 从已用的第一只箱子开始顺序寻找能放入物品i 的箱子j; if (已用箱子都不能再放物品i) { 另用一个箱子,并将物品i放入该箱子; box_count++; } else 将物品i放入箱子j; } } 上述算法能求出需要的箱子数box_count,并能求出各箱子所装物品。下面的例子说明该算法不一定能找到最优解,设有6种物品,它们的体积分别为:60、45、35、20、20和20单位体积,箱子的容积为100个单位体积。按上述算法计算,需三只箱子,各箱子所装物品分别为:第一只箱子装物品1、3;第二只箱子装物品2、4、5;第三只箱子装物品6。而最优解为两只箱子,分别装物品1、4、5和2、3、6。 若每只箱子所装物品用链表来表示,链表首结点指针存于一个结构中,结构记录尚剩余的空间量和该箱子所装物品链表的首指针。另将全部箱子的信息也构成链表。以下是按以上算法编写的程序。 【程序】 # include <stdio.h> # include <stdlib.h> typedef struct ele { int vno; struct ele *link; } ELE; typedef struct hnode { int remainder; ELE *head; Struct hnode *next; } HNODE;
void main() { int n, i, box_count, box_volume, *a; HNODE *box_h, *box_t, *j; ELE *p, *q; Printf(“输入箱子容积/n”); Scanf(“%d”,&box_volume); Printf(“输入物品种数/n”); Scanf(“%d”,&n); A=(int *)malloc(sizeof(int)*n); Printf(“请按体积从大到小顺序输入各物品的体积:”); For (i=0;i<n;i++) scanf(“%d”,a+i); Box_h=box_t=NULL; Box_count=0; For (i=0;i<n;i++) { p=(ELE *)malloc(sizeof(ELE)); p->vno=i; for (j=box_h;j!=NULL;j=j->next) if (j->remainder>=a) break; if (j==NULL) { j=(HNODE *)malloc(sizeof(HNODE)); j->remainder=box_volume-a; j->head=NULL; if (box_h==NULL) box_h=box_t=j; else box_t=boix_t->next=j; j->next=NULL; box_count++; } else j->remainder-=a; for (q=j->next;q!=NULL&&q->link!=NULL;q=q->link); if (q==NULL) { p->link=j->head; j->head=p; } else { p->link=NULL; q->link=p; } } printf(“共使用了%d只箱子”,box_count); printf(“各箱子装物品情况如下:”); for (j=box_h,i=1;j!=NULL;j=j->next,i++) { printf(“第%2d只箱子,还剩余容积%4d,所装物品有;/n”,I,j->remainder); for (p=j->head;p!=NULL;p=p->link) printf(“%4d”,p->vno+1); printf(“/n”); } } 【问题】 马的遍历 问题描述:在8×8方格的棋盘上,从任意指定的方格出发,为马寻找一条走遍棋盘每一格并且只经过一次的一条路径。 马在某个方格,可以在一步内到达的不同位置最多有8个,如图所示。如用二维数组board[ ][ ]表示棋盘,其元素记录马经过该位置时的步骤号。另对马的8种可能走法(称为着法)设定一个顺序,如当前位置在棋盘的(i,j)方格,下一个可能的位置依次为(i+2,j+1)、(i+1,j+2)、(i-1,j+2)、(i-2,j+1)、(i-2,j-1)、(i-1,j-2)、(i+1,j-2)、(i+2,j-1),实际可以走的位置尽限于还未走过的和不越出边界的那些位置。为便于程序的同意处理,可以引入两个数组,分别存储各种可能走法对当前位置的纵横增量。 4 3 5 2 马 6 1 7 0
对于本题,一般可以采用回溯法,这里采用Warnsdoff策略求解,这也是一种贪婪法,其选择下一出口的贪婪标准是在那些允许走的位置中,选择出口最少的那个位置。如马的当前位置(i,j)只有三个出口,他们是位置(i+2,j+1)、(i-2,j+1)和(i-1,j-2),如分别走到这些位置,这三个位置又分别会有不同的出口,假定这三个位置的出口个数分别为4、2、3,则程序就选择让马走向(i-2,j+1)位置。 由于程序采用的是一种贪婪法,整个找解过程是一直向前,没有回溯,所以能非常快地找到解。但是,对于某些开始位置,实际上有解,而该算法不能找到解。对于找不到解的情况,程序只要改变8种可能出口的选择顺序,就能找到解。改变出口选择顺序,就是改变有相同出口时的选择标准。以下程序考虑到这种情况,引入变量start,用于控制8种可能着法的选择顺序。开始时为0,当不能找到解时,就让start增1,重新找解。细节以下程序。 【程序】 # include <stdio.h> int delta_i[ ]={2,1,-1,-2,-2,-1,1,2}; int delta_j[ ]={1,2,2,1,-1,-2,-2,-1}; int board[8][8]; int exitn(int i,int j,int s,int a[ ]) { int i1,j1,k,count; for (count=k=0;k<8;k++) { i1=i+delta_i[(s+k)%8]; j1=i+delta_j[(s+k)%8]; if (i1>=0&&i1<8&&j1>=0&&j1<8&&board[I1][j1]==0) a[count++]=(s+k)%8; } return count; }
int next(int i,int j,int s) { int m,k,mm,min,a[8],b[8],temp; m=exitn(i,j,s,a); if (m==0) return –1; for (min=9,k=0;k<m;k++) { temp=exitn(I+delta_i[a[k]],j+delta_j[a[k]],s,b); if (temp<min) { min=temp; kk=a[k]; } } return kk; }
void main() { int sx,sy,i,j,step,no,start; for (sx=0;sx<8;sx++) for (sy=0;sy<8;sy++) { start=0; do { for (i=0;i<8;i++) for (j=0;j<8;j++) board[j]=0; board[sx][sy]=1; I=sx; j=sy; For (step=2;step<64;step++) { if ((no=next(i,j,start))==-1) break; I+=delta_i[no]; j+=delta_j[no]; board[j]=step; } if (step>64) break; start++; } while(step<=64) for (i=0;i<8;i++) { for (j=0;j<8;j++) printf(“%4d”,board[j]); printf(“/n/n”); } scanf(“%*c”); } } 七、分治法
1、分治法的基本思想 任何一个可以用计算机求解的问题所需的计算时间都与其规模N有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算;n=2时,只要作一次比较即可排好序;n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。 分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。 如果原问题可分割成k个子问题(1<k≤n),且这些子问题都可解,并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。 2、分治法的适用条件 分治法所能解决的问题一般具有以下几个特征: (1)该问题的规模缩小到一定的程度就可以容易地解决; (2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质; (3)利用该问题分解出的子问题的解可以合并为该问题的解; (4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。 上述的第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;第二条特征是应用分治法的前提,它也是大多数问题可以满足的,此特征反映了递归思想的应用;第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑贪心法或动态规划法。第四条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。 3、分治法的基本步骤 分治法在每一层递归上都有三个步骤: (1)分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题; (2)解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题; (3)合并:将各个子问题的解合并为原问题的解。 它的一般的算法设计模式如下: Divide_and_Conquer(P) if |P|≤n0 then return(ADHOC(P)) 将P分解为较小的子问题P1、P2、…、Pk for i←1 to k do yi ← Divide-and-Conquer(Pi) △ 递归解决Pi T ← MERGE(y1,y2,…,yk) △ 合并子问题 Return(T) 其中 |P| 表示问题P的规模;n0为一阈值,表示当问题P的规模不超过n0时,问题已容易直接解出,不必再继续分解。ADHOC(P)是该分治法中的基本子算法,用于直接解小规模的问题P。因此,当P的规模不超过n0时,直接用算法ADHO
暴雪@2005-6-27 1:21:27
暴雪@2005-6-27 1:21:27
|
| |