用Coze大模型和工作流打造一个舆情监控系统!可选多种数据源,实时分析,定时任务!

今天给大家介绍一下如何用Coze大模型工作流打造一个舆情监控系统,能够根据关键词从多数据源查询相关搜索结果并进行舆情分析;可以设置定时舆情监控任务;可以查询历史舆情分析记录。

一、说明

本文所使用的为Coze免费工作流,文中所涉及的技术、思路和工具仅供以学习交流使用,任何人不得将其用于非法用途以及盈利等目的,否则后果自行承担。

二、什么是Coze

Coze 是字节跳动推出的新一代 AI 原生应用开发服务平台,堪称 “字节版 GPTs”。它致力于让人人都能成为 AI 应用开发者,彻底打破技术壁垒。

从功能上看,Coze 相当强大。它拥有超 60 个插件,涵盖新闻阅读、图像理解等多个领域,还支持自定义插件,能力边界无限拓展。通过知识库管理,可对接各种格式数据,让 AI 精准回答专业问题。长期记忆功能能记住用户偏好,实现个性化交互;定时任务可主动推送消息,像贴心小助手。工作流设计则通过拖拉拽节点,轻松处理复杂任务。

在平台优势方面,低门槛开发让零基础小白也能上手,快速构建与部署可一键发布应用到多平台,团队协作功能助力多人高效完成项目,丰富的应用场景和海量模板满足各行业需求。Coze 分为国内版和海外版,分别基于云雀大模型和 OpenAI 相关 API ,为不同用户提供适配的 AI 开发体验。

三、操作方法

打开Coze的主页,如下图所示,注意网址,不要搞错了:

然后点击「模板」,选择「舆情分析」:

可以选择直接用,也可以选择「复制」,将其复制到自己的空间下:

下面展示下复制到自己的空间,点击「复制」,然后点击「确认」:

复制完成之后,就可以在「工作空间」、「项目开发」中看到了:

然后点进去看看,可以看到左侧有该应用使用的工作流,动手能力强的兄弟可以根据自己的需要进行改进升级:

动手能力不强的兄弟可以点击「发布」,然后直接用:

可以发布为API、Coze应用、或者小程序:

四、效果展示

下面展示一些效果,以DeepSeek为例,输入「DeepSeek」,然后勾选数据来源,点击「实时分析」:

可以看到,工具会给出数据分析的结果,以及是正面还是负面。

同时还可以设置定时任务:

以及查看查询记录:

大家快去试试吧!

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

### Coze 数据分析工作流的实现方法 #### 1. 工作流概述 工作流是一种将复杂任务分解为多个可执行环节的方法,通过定义清晰的任务序列规则来提高效率。在数据分析领域,Coze 提供了一种灵活的方式来构建自动化数据处理流程[^1]。 #### 2. 核心要素解析 为了成功创建一个数据分析工作流,需关注以下几个核心要素: - **输入源**:明确数据来源,例如文件上传、API 接口调用或其他外部服务。 - **处理节点**:这是整个工作流的关键部分,负责具体的数据清洗、转换计算操作。 - **输出目标**:指定结果存储位置或展示方式,比如数据库记录更新、可视化图表生成等。 #### 3. 创建数据分析工作流的具体步骤 以下是基于 Coze 平台创建数据分析工作流的主要技术细节: ##### (1) 初始化项目并配置环境 确保已安装必要的依赖库以及连接至 Coze 开放平台接口。这一步通常涉及设置 API 密钥其他认证参数[^2]。 ```python import coze_sdk as sdk client = sdk.Client(api_key="your_api_key_here") workflow_id = client.create_workflow(name="Data Analysis Workflow") print(f"Created workflow with ID {workflow_id}") ``` ##### (2) 添加人声分割与预处理节点 如果您的应用场景涉及到语音数据,则可能需要用到专门的人声分割功能。此阶段会提取有用的信息片段以便后续深入挖掘。 ##### (3) 集成高级算法模块 对于更深层次的数据洞察需求,可以引入机器学习模型或者统计测试作为单独的功能单元加入到链条之中。下面是一个简单的例子展示了如何加载预先训练好的分类器来进行预测作业[^4]: ```python from sklearn.externals import joblib model_path = "/path/to/pretrained_model.pkl" loaded_model = joblib.load(model_path) def predict(data_point): result = loaded_model.predict([data_point]) return result[0] node_logic = {"function": predict, "description": "Predict using ML model"} new_node_id = client.add_processing_node(workflow_id=workflow_id, logic=node_logic) ``` ##### (4) 定义结束动作及导出成果物 最后不要忘记安排好怎样把最终产物交付给用户或是存档下来以备将来查阅之用[^3]。 --- #### 总结 以上便是利用 Coze 构建一套完整的端到端数据分析解决方案的大致框架图景。当然实际情况可能会更加错综复杂些,但只要遵循上述原则就能逐步摸索出门道来了!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值