信息熵与压缩编码基础

本文介绍了信息熵的概念,按照香农的理论解释了熵在事件信息量平均值中的意义。通过具体例题展示了如何计算一串消息的信息熵,并对比分析了采用香农-凡诺编码和霍夫曼编码后的压缩率。同时,文章还讨论了非压缩格式BMP图像的内存占用及文件大小计算。
摘要由CSDN通过智能技术生成

什么是信息熵

定义:按照香农的理论,在有限的互斥和联合穷举事件合集中,熵为事件的信息量的平均值,也称事件的平均信息量。
在数学上表示为发
在这里插入图片描述
在这里插入图片描述

例题

一串消息包含A,B,C,D,E共5类符号,其内容是AABBBBAAAACCCCCCCCCEEEEEEDDDDEEEEEEEEEEEEE, 请问其信息熵是多少?如果分别采用香农-凡诺编码,霍夫曼编码,压缩率分别是多少?
在这里插入图片描述
在这里插入图片描述
采用香农-凡诺编码
按照概率大小排序,再分割E,C分为19和23,再从C,A,B,D中分割C,A分为了9,14,再从A,B,D中分割为A,B分为6和8,再将B和D分割。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值