如何提升python向量加法的运行速度

编程速记 专栏收录该内容
4 篇文章 0 订阅

提升python向量加法的运行速度

  在使用python进行深度学习模型训练或预测时,我们经常会使用到向量加法运算。
我们这里比较两个向量相加的两种方法。

一、逐一做标量加法

  这里首先定义两个1000维的向量。

import torch
from time import time

a = torch.ones(1000)
b = torch.ones(1000)

  然后,这里将这两个向量按元素逐一做标量加法。

start = time()
c = torch.zeros(1000)
for i in range(1000):
    c[i] = a[i] + b[i]
print(time() - start)

  可以看到得到的输出时间是:

0.007939338684082031

二、矢量加法

  第二种方法是,我们将这两个向量直接做矢量加法。

start = time()
d = a + b
print(time() - start)

  运行的时间结果是:

8.20159912109375e-05

  通过对比可以看到,使用矢量加法能够大大减少GPU的运行时间,来提高计算效率。

代码参考自:动手学深度学习 pytorch版

  • 1
    点赞
  • 2
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值