【数值分析】最小二乘,最佳一致逼近

最小二乘

用于不知道 f(x){f(x)}f(x) 的时候, [a,b]{[a,b]}[a,b] 只有一堆点。
x1∣x2∣x3∣⋯∣xn∣−−−−−−−−−−f(x1)∣f(x2)∣f(x3)∣⋯∣f(xn)∣ \begin{array}{cccccc} x_1 &|& x_2 &|& x_3 &|& \cdots &|& x_n &| \\ -&-&-&-&-&-&-&-&-&- \\ f(x_1) &|& f(x_2) &|& f(x_3) &|& \cdots &|& f(x_n) &| \\ \end{array} x1f(x1)x2f(x2)x3f(x3)xnf(xn)

ϕ0=1,ϕ1=x,ϕ2=x2,ϕ3=x3,⋯ \phi_0=1 ,\phi_1=x,\phi_2=x^2,\phi_3=x^3, \cdots ϕ0=1,ϕ1=x,ϕ2=x2,ϕ3=x3,
为例。定义
(ϕ0,ϕ0)=∑i=1nϕ0×ϕ0=∑i=1n1×1=n(ϕ0,ϕ1)=∑i=1nϕ0×ϕ1=∑i=1n1×xi(ϕ1,ϕ2)=∑i=1nxi×xi2(ϕ0,f)=∑i=1n1×f(xi)(ϕ1,f)=∑i=1nxi×f(xi)⋯ \begin{align*} (\phi_0,\phi_0)=&\sum_{i=1}^{ n}\phi_0 \times \phi_0= \sum_{i=1}^{ n}1 \times 1=n\\ (\phi_0,\phi_1)=& \sum_{i=1}^{ n}\phi_0 \times \phi_1= \sum_{i=1}^{ n} 1 \times x_i\\ (\phi_1,\phi_2)=&\sum_{i=1}^{ n}x_i \times x_i^2\\ (\phi_0,f)=& \sum_{i=1}^{ n} 1 \times f(x_i)\\ (\phi_1,f)=& \sum_{i=1}^{ n} x_i \times f(x_i)\\ \cdots \end{align*} (ϕ0,ϕ0)=(ϕ0,ϕ1)=(ϕ1,ϕ2)=(ϕ0,f)=(ϕ1,f)=i=1nϕ0×ϕ0=i=1n1×1=ni=1nϕ0×ϕ1=i=1n1×xii=1nxi×xi2i=1n1×f(xi)i=1nxi×f(xi)
求内积要带权函数!
对应的法方程组:
[(ϕ0,ϕ0)(ϕ0,ϕ1)(ϕ0,ϕ2)(ϕ1,ϕ0)(ϕ1,ϕ1)(ϕ1,ϕ2)(ϕ2,ϕ0)(ϕ2,ϕ1)(ϕ2,ϕ2)][abc]=[(ϕ0,f)(ϕ1,f)(ϕ2,f)] \begin{bmatrix} (\phi_0,\phi_0) & (\phi_0,\phi_1) & (\phi_0,\phi_2)\\ (\phi_1,\phi_0) & (\phi_1,\phi_1) & (\phi_1,\phi_2)\\ (\phi_2,\phi_0) & (\phi_2,\phi_1) & (\phi_2,\phi_2) \end{bmatrix} \begin{bmatrix} a\\b\\c \end{bmatrix}= \begin{bmatrix} (\phi_0,f)\\(\phi_1,f)\\(\phi_2,f) \end{bmatrix} (ϕ0,ϕ0)(ϕ1,ϕ0)(ϕ2,ϕ0)(ϕ0,ϕ1)(ϕ1,ϕ1)(ϕ2,ϕ1)(ϕ0,ϕ2)(ϕ1,ϕ2)(ϕ2,ϕ2)abc=(ϕ0,f)(ϕ1,f)(ϕ2,f)
则二次最小二乘法拟合函数为:
S∗(x)=aϕ0+bϕ1+cϕ2 S^*(x)=a\phi_0+b\phi_1+c\phi_2 S(x)=aϕ0+bϕ1+cϕ2
均方误差为
∣∣δ∣∣2=∑i=1nρ(xi)(f(xi)−S∗(xi))2 || \delta ||_2= \sqrt{ \sum_{i=1}^{ n} \rho(x_i) (f(x_i)-S^*(x_i))^2} ∣∣δ2=i=1nρ(xi)(f(xi)S(xi))2
最大质误差
∣∣δ∣∣∞=max⁡∣f(xi)−S∗(xi)∣ || \delta ||_{\infty}=\max|f(x_i)-S^*(x_i)| ∣∣δ=maxf(xi)S(xi)
若拟合公式为 y=axb{y=ax^b}y=axb ,取对数变成 y′=a′+bx′{y'=a'+bx'}y=a+bx

[!example]-
已知一组实验数据如下表:
xi∣∣1∣2∣3∣4∣5∣============yi∣∣4∣4.5∣6∣8∣8.5∣−−−−−−−−−−−−ρi∣∣2∣1∣3∣1∣1∣ \begin{array}{cccccc} x_i &||& 1 &|& 2 &|& 3 &|& 4 &|& 5&| \\=&=&=&=&=&=&=&=&=&=&=&=\\ y_i &||& 4 &|& 4.5 &|& 6 &|& 8 &|& 8.5 &| \\ -&-&-&-&-&-&-&-&-&-&-&- \\ \rho_i &||& 2 &|& 1 &|& 3 &|& 1 &|& 1 &|\\ \end{array} xi=yiρi∣∣=∣∣∣∣1=42=2=4.51=3=63=4=81=5=8.51=
试用最小二乘法求线性拟合曲线 y=a+bx{y=a+bx}y=a+bx ,并求均方误差
解:设拟合函数为
ϕ(x)=a+bx \phi(x)=a+bx ϕ(x)=a+bx
ϕ0(x)=1  ,  ϕ1(x)=x \phi_0(x)=1 \,\,,\,\, \phi_1(x)=x ϕ0(x)=1,ϕ1(x)=x
引进向量
ϕ0=(1,1,1,1,1)Tϕ1=(1,2,3,4,5)Tf=(4,4.5,6,8,8.5)T \begin{align*} \phi_0=&(1,1,1,1,1)^ \mathrm T \\ \phi_1=&(1,2,3,4,5)^ \mathrm T \\ f=&(4,4.5,6,8,8.5)^ \mathrm T \end{align*} ϕ0=ϕ1=f=(1,1,1,1,1)T(1,2,3,4,5)T(4,4.5,6,8,8.5)T
求内积,带上权函数
(ϕ0,ϕ0)=8  ,  (ϕ0,ϕ1)=22(ϕ1,ϕ0)=22  ,  (ϕ1,ϕ1)=74(f,ϕ0)=47  ,  (f,ϕ1)=145.5 \begin{align*} (\phi_0,\phi_0)=8 \,\,,\,\, &(\phi_0,\phi_1)=22 \\ (\phi_1,\phi_0)=22 \,\,,\,\, &(\phi_1,\phi_1)=74 \\ (f,\phi_0)=47 \,\,,\,\, &(f,\phi_1)=145.5 \end{align*} (ϕ0,ϕ0)=8,(ϕ1,ϕ0)=22,(f,ϕ0)=47,(ϕ0,ϕ1)=22(ϕ1,ϕ1)=74(f,ϕ1)=145.5
[8222274][ab]=[47145.5] \begin{bmatrix} 8 & 22 \\ 22 & 74 \end{bmatrix} \begin{bmatrix} a\\ b \end{bmatrix}= \begin{bmatrix} 47\\145.5 \end{bmatrix} [8222274][ab]=[47145.5]
解得
{a=2.5648b=1.2037 \begin{cases} a=2.5648 \\ \\ b=1.2037 \end{cases} a=2.5648b=1.2037
所得线性拟合曲线为(保留四位小数)
y=2.5648+1.2037x y=2.5648+1.2037x y=2.5648+1.2037x
均方误差
∣∣δ∣∣2=∑i=0mρ(xi)(ϕ∗(xi)−yi)2 || \delta ||_2= \sqrt{ \sum_{i=0}^{ m}\rho(x_i)(\phi^*(x_i)-y_i)^2 } ∣∣δ2=i=0mρ(xi)(ϕ(xi)yi)2

matlab最小二乘逼近

matlab可以使用左除来求解最小二乘问题。


最佳一致逼近

就是构造一个 n{n}n 次逼近函数,使得函数与逼近函数的差在区间上有 n+2{n+2}n+2 个关于 0{0}0 的交错点,且这个误差函数在这几个交错点上的绝对值都相等,都为极值点。

一次最佳一致逼近

[!example]-
求函数 f(x)=x3{f(x)=x^3}f(x)=x3[1,3]{[1,3]}[1,3] 上的一次最佳一致逼近多项式 P(x){P(x)}P(x)
解:设
P1(x)=a0+a1x P_1(x)=a_0+a_1x P1(x)=a0+a1x
∵f′(x)=3x2,f′′(x)=6x>0,x∈[1,3] \because f'(x)=3x^2,f''(x)=6x>0,x\in[1,3] f(x)=3x2,f′′(x)=6x>0,x[1,3]
∴f(x)与P1(x)有三个交错偏差点 \therefore f(x)与P_1(x)有三个交错偏差点 f(x)P1(x)有三个交错偏差点
x0=1  ,  x1∈(1,3)  ,  x2=3 x_0=1 \,\,,\,\, x_1\in(1,3) \,\,,\,\, x_2=3 x0=1,x1(1,3),x2=3

{f(x0)−P1(x0)=−[f(x1)−P1(x1)]=f(x2)−P1(x2)f′(x1)−P1′(x1)=0 \begin{cases} f(x_0)-P_1(x_0)=-[f(x_1)-P_1(x_1)]=f(x_2)-P_1(x_2)\\\\ f'(x_1)-P_1'(x_1)=0 \end{cases} f(x0)P1(x0)=[f(x1)P1(x1)]=f(x2)P1(x2)f(x1)P1(x1)=0

{13−(a0+a1⋅1)=−[x13−(a0+a1x1)]=33−(a0+3a1)3x12−a1=0 \begin{cases} 1^3-(a_0+a_1 \cdot 1)=-[x_1^3-(a_0+a_1x_1)]=3^3-(a_0+3a_1)\\\\ 3x_1^2-a_1=0 \end{cases} 13(a0+a11)=[x13(a0+a1x1)]=33(a0+3a1)3x12a1=0
解得
a1=13  ,  x1=133  ,  a0=−(6+133133) a_1=13 \,\,,\,\, x_1= \sqrt{ \frac{13}{3}} \,\,,\,\, a_0=-(6+ \frac{13}{3} \sqrt{\frac{13}{3}}) a1=13,x1=313,a0=(6+313313)
P1(x)=−(6+133133)+13x≈−15.0206+13x P_1(x)=-(6+ \frac{13}{3} \sqrt{\frac{13}{3}})+13x \approx -15.0206+13x P1(x)=(6+313313)+13x15.0206+13x

二次最佳一致逼近

用低阶多项式来逼近高阶多项式
定理:
考虑区间 [−1,1]{[-1,1]}[1,1] 上的函数的最佳逼近,对于 n{n}n 次首一多项式 p(x)∈Hn{p(x)\in H_n}p(x)Hn ,满足 min⁡p(x)∈Hn∣∣p(x)∣∣C[−1,1]{\min_{p(x)\in H_n}||p(x)||_{C[-1,1]}}minp(x)Hn∣∣p(x)C[1,1]p(x){p(x)}p(x)n{n}n 次首一切比雪夫多项式
Tn(x)2n−1 \frac{T_n(x)}{2^{n-1}} 2n1Tn(x)
即误差函数是一个 n{n}n 次首一切比雪夫多项式。所以 n−1{n-1}n1 次最佳一致逼近多项式 Pn−1(x){P_{n-1}(x)}Pn1(x) 满足
f(x)−Pn−1(x)an=Tn(x)2n−1 \frac{f(x)-P_{n-1}(x)}{a_n}= \frac{T_n(x)}{2^{n-1}} anf(x)Pn1(x)=2n1Tn(x)
即:
Pn−1(x)=f(x)−an2n−1Tn(x) P_{n-1}(x)=f(x)- \frac{a_n}{2^{n-1}}T_n(x) Pn1(x)=f(x)2n1anTn(x)

[!example]-
f(x)=x3+2x2{f(x)=x^3+2x^2}f(x)=x3+2x2 在区间 [2,4]{[2,4]}[2,4] 上的二次最佳一致逼近函数,并估计误差。
解:
x∈[2,4]  ,  令x=2+42+4−22t=3+t  ,  t∈[−1,1] x\in[2,4]\,\,,\,\, 令x= \frac{2+4}{2}+ \frac{4-2}{2}t=3+t \,\,,\,\, t\in[-1,1] x[2,4],x=22+4+242t=3+t,t[1,1]

g(t)=(3+t)3+2(3+t)2 g(t)=(3+t)^3+2(3+t)^2 g(t)=(3+t)3+2(3+t)2
切比雪夫多项式
T3=4t3−3t T_3=4t^3-3t T3=4t33t
t∈[−1,1]{t\in[-1,1]}t[1,1] 上关于 0{0}04{4}4 个交错偏差点,所以
P2(t)=g(t)−14T3(t)=(t+3)3+2(t+3)2−14(4t3−3t)=11x2−1054x+994=P2∗(x) \begin{align*} P_2(t)=&g(t)- \frac{1}{4}T_3(t)\\ =&(t+3)^3+2(t+3)^2- \frac{1}{4}(4t^3-3t)\\ =&11x^2- \frac{105}{4}x+ \frac{99}{4}=P_2^*(x) \end{align*} P2(t)===g(t)41T3(t)(t+3)3+2(t+3)241(4t33t)11x24105x+499=P2(x)
误差:
max⁡2≤x≤4∣f(x)−P2∗(x)∣=max⁡−1≤t≤1∣14T3(t)∣=14 \max_{2\le x\le 4}|f(x)-P_2^*(x)|=\max_{-1\le t\le 1}| \frac{1}{4}T_3(t)|= \frac{1}{4} 2x4maxf(x)P2(x)=1t1max41T3(t)=41

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值