自然语言处理(Natural Language Processing,NLP)是计算机科学,人工智能,语言学关于计算机和人类自然语言之间的相互作用的领域,是计算机科学领域与人工智能领域中的一个重要方向。NLP发展到今天已经进入到了LLM(大语言模型)的时代,学术界按发展时间线将NLP归纳到四个范式,即NLP四范式:
第一范式:基于「传统机器学习模型」的范式,利用特定的规则或数学、统计学的模型来对特征进行匹配和利用,进而完成特定的NLP任务,靠人工来进行大量的特征提取,依赖于大量的监督数据,并且需要专业知识和技能。如序列标注、朴素贝叶斯等算法。
第二范式:基于「深度学习模型」的范式,来到了深度学习时代,实现了自动获取特征来进行端到端的分类,从而减少了手动构建特征的需求,模型准确度有所提高,特征工程的工作量也有所减少。如CNN、RNN等神经网络模型。
第三范式:基于「预训练模型+fine-tuning」的范式,分为两个阶段,先利用大型语料库完成预训练模型的无监督学习,然后利用预训练好的模型在下游任务的特定数据集上进行fine-tuning,模型准确度得到显著提高。如GPT、Bert等模型。
第四范式:基于「预训练模型+Prompt+预测」的范式,prompt 将下游的输入输出形式改造成预训练任务中的形式(重构下游任务),使得小样本、零样本学习成为可能,模型训练所需的训练数据显著减少。
其中,在预训练语言模型的发展中,出现了四类框架,而现在更多地朝着Decoder-Only发展。
(1)Encoder-Only,以BERT为代表的自编码模型。
(2)Decoder-Only,以GPT为代表的自回归模型。
(3)Encoder-Decoder,以T5为代表的seq2seq模型。
(4)Prefix-LM,一种Encoder-Decoder的变种,以UniLM为代表。
随着GPT3的出现,超大规模参数的模型突破了一些边界,涌现出了新的能力,GPT3 + Prompt(In-Context leanring)在很多zero-shot场景下取得了SOTA的结果,从此就实现了任务和模型的收敛。将所有的NLP任务都转换成生成式,模型就朝着Decoder-Only的方向发展。而且,Decoder-Only相比Encoder训练成本更低,自回归的训练数据也更容易构造,在下游任务都统一成NLG的模型,自回归的训练方法和下游任务也更贴合。
预训练模型与提示词的协同应用
(一)文本分类
在文本分类任务中,将预训练模型与提示词相结合。例如,对于新闻分类任务,设计提示词 “这篇新闻属于以下哪个类别:政治、经济、体育、娱乐”,然后将新闻文本与提示词拼接后输入预训练模型。模型根据提示词的引导,对新闻文本进行分析并输出所属类别。通过这种方式,利用预训练模型的语言理解能力和提示词的任务导向作用,能够提高文本分类的准确性和效率,尤其在小样本训练数据的情况下,表现更为突出。
(二)问答系统
在问答系统中,提示词起到关键的引导作用。如设计提示词 “根据以下文本回答问题:[问题内容]”,预训练模型依据提示词从给定的文本中提取信息并生成答案。与传统的问答系统相比,基于预训练模型和提示词的方法能够更好地处理复杂问题,理解问题的语义和语境,提供更准确、更全面的答案。例如,在处理关于历史事件的问答时,模型可以根据提示词在大量历史文献的预训练知识基础上,给出详细的时间、人物、事件经过等信息。
(三)文本生成
在文本生成任务中,提示词可以控制生成文本的风格、主题和内容方向。例如,“以浪漫风格创作一篇关于爱情的短文,开头是:在那个繁星点点的夜晚”,预训练模型根据这样的提示词,运用其学习到的语言知识和语义信息,生成符合要求的浪漫爱情短文。这种方式使得文本生成更加可控、多样化,满足不同用户的需求和创作场景。
面临的挑战
(一)提示词优化难度
设计有效的提示词并非易事,需要深入了解预训练模型的特性和任务需求。不同的提示词可能导致模型输出截然不同的结果,而且优化提示词往往需要大量的实验和经验积累。例如,在一些复杂任务中,如多轮对话生成,找到合适的提示词序列来引导模型进行连贯、准确的对话是一个具有挑战性的问题。
(二)模型对提示词的敏感性
预训练模型对提示词的微小变化可能非常敏感。一个词或短语的改变可能导致模型输出的巨大差异,甚至产生错误或不合理的结果。这就要求在设计提示词时必须格外谨慎,确保提示词的稳定性和可靠性。例如,在医学领域的问答任务中,提示词的不准确可能导致模型给出错误的医疗建议,造成严重后果。
(三)潜在的语义偏差
由于预训练模型是基于大规模文本数据训练的,这些数据可能存在一些语义偏差,如文化偏见、性别歧视等。当与提示词结合时,可能会放大或延续这些偏差。例如,在一些职业相关的文本生成任务中,如果提示词设计不当,可能会受到数据中性别职业刻板印象的影响,生成带有偏见的文本内容。
未来发展趋势
(一)提示词自动生成技术
随着技术的发展,有望开发出自动生成提示词的技术。通过分析任务需求、输入文本特征以及预训练模型的能力,自动生成最适合的提示词,减少人工设计提示词的工作量和难度,提高提示词的质量和效果。
(二)模型与提示词的协同进化
预训练模型和提示词工程将相互促进、协同进化。一方面,预训练模型的不断改进将为提示词工程提供更强大的基础,使其能够实现更复杂、更精准的任务引导;另一方面,提示词工程的发展也将促使预训练模型在特定任务上的性能进一步提升,两者的紧密结合将推动 NLP 技术在更多领域取得突破。
(三)跨领域与多模态应用拓展
预训练模型与提示词的结合将在跨领域和多模态应用中得到更广泛的拓展。例如,在医疗、金融、法律等专业领域,通过设计特定领域的提示词,利用预训练模型的通用语言能力处理专业文本;在多模态应用中,如结合图像与文本的描述生成任务,提示词可以引导模型根据图像内容生成准确、生动的文本描述,实现更智能、更全面的信息处理与交互。