线性筛欧拉函数 【模板】

该博客介绍了如何使用线性筛法来计算欧拉函数。欧拉函数φ(n)表示小于等于n且与n互质的正整数个数。文章详细阐述了欧拉函数的基本性质,如φ(p)=p-1(p为质数)和φ(pk)=pk-pk-1,并给出基于积性函数性质的计算公式。通过线性筛法,可以高效地计算出1到n的欧拉函数值,代码示例展示了具体实现过程。
摘要由CSDN通过智能技术生成

线性筛欧拉函数

欧拉函数

欧拉函数的定义:
gcd ⁡ ( a , b ) = 1 \gcd(a,b)=1 gcd(a,b)=1,则 a a a b b b互质
在自然数1到n中与n互质的个数称为欧拉函数,记作 φ ( n ) φ(n) φ(n)
下文皆以 p p p 表示质数 (prime)


性质1: φ ( p ) = p − 1 φ(p)=p-1 φ(p)=p1

证明:显然,质数的因数只有1和它本身,且1与任何数互质,所以除了它本身,其它都互质。

性质2: φ ( p k ) = p k − p k − 1 φ(p^k)=p^k-p^{k-1} φ(pk)=pkpk1

证明:与性质1类似, p k p^k pk即总数减去它的因数数量 p k − 1 p^{k-1} pk1,由于 p k p^k pk
根据容斥定理可以得到 φ ( n ) = n ∗ ∏ ( 1 − p ) / p φ(n)=n*∏(1-p)/p φ(n)=n(1p)/p
由于φ是积性函数,所以 φ ( a b ) = φ ( a ) ∗ φ ( b ) ( gcd ⁡ ( a , b ) = 1 ) φ(ab)=φ(a)*φ(b)(\gcd(a,b)=1) φ(ab)=φ(a)φ(b)(gcd(a,b)=1)
∑ [ d ∣ n ] φ ( d ) = n , ∑ [ g c d ( n , i ) = = 1 ] i = n ∗ φ ( n ) / 2 ∑[d|n]φ(d)=n,∑[gcd(n,i)==1]i=n*φ(n)/2 [dn]φ(d)=n[gcd(n,i)==1]i=nφ(n)/2
根据以上性质,可以用各种筛法解决

#include<cstdio>
#include<iostream>
#define Max 100000001
using namespace std;
int phi[Max],n,p[Max],pn; 
bool f[Max];
void Phi()//φ(欧拉函数)
{
	phi[1]=1;
	for(int i=2;i<=n;i++)
	{
		if(!f[i])
		{
			p[++pn]=i;
			phi[i]=i-1;//根据性质,i为质数, φ(i)=i-1
		}
		for(int j=1;j<=pn&&i*p[j]<=n;j++)
		{
			f[i*p[j]]=1;
			if(i%p[j]==0)
			{
				//根据通式,φ(i*p[j]) = (i*p[j])*∏(1-p)/p = (i*∏(1-p)/p)*p[j] = φ(i)*p[j]
				phi[i*p[j]]=phi[i]*p[j];
				break;
			}
			else //否则,i和 p[j]互质,因为 p[j]是质数 
			phi[i*p[j]]=phi[i]*(p[j]-1);//由积性函数性质得 φ(i*p[j]) = φ(i)*φ(p[j]) = φ(i)*(p[j]-1)
		}
	}
}
int main()
{
	printf("求1~n的欧拉函数\n输入n\n");
	scanf("%d",&n);
	Phi();
	for(int i=1;i<=n;i++)
	{
		printf("1~%d中与%d互质的个数:%d\n",i,i,phi[i]);
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值