【学习笔记】数理统计习题九

本文介绍了数理统计中的几个重要习题,涉及单侧检验和双侧检验。针对正态分布样本,给出了检验方差和均值的拒绝域,并详细解释了UMPT(最优无偏检验)的构造过程,讨论了功效函数的连续性,证明了在不同假设下的拒绝域可以通用。
摘要由CSDN通过智能技术生成

Q1: Let X 1 , … , X n X_1,\dots,X_n X1,,Xn be an iid sample of N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2), where μ \mu μ is known. Show that this model has a monotone likelihood ratio. Given a significance level α \alpha α, derive a UMP test of the following hypotheses:
H 0 : σ 2 ≥ σ 0 2   v s .   H 1 : σ 2 < σ 0 2 ; H_0:\sigma^2 \ge \sigma_0^2\ vs.\ H_1:\sigma^2<\sigma_0^2; H0:σ2σ02 vs. H1:σ2<σ02; H 0 : σ 2 ≤ σ 0 2   v s .   H 1 : σ 2 > σ 0 2 . H_0:\sigma^2 \le \sigma_0^2\ vs.\ H_1:\sigma^2>\sigma_0^2. H0:σ2σ02 vs. H1:σ2>σ02.

解: 对于任意的 σ 2 2 > σ 1 2 > 0 \sigma_2^2>\sigma_1^2>0 σ22>σ12>0,我们有 L ( x 1 : n ; σ 2 2 ) L ( x 1 : n ; σ 1 2 ) = ∏ i = 1 n ( 1 2 π σ 2 ) n e x p { − ( x i − μ ) 2 2 σ 2 2 } ( 1 2 π σ 1 ) n e x p { − ( x i − μ ) 2 2 σ 2 1 } = ( σ 1 σ 2 ) n e x p { 1 2 ( 1 σ 1 2 − 1 σ 2 2 ) ∑ i = 1 n ( x i − μ ) 2 } \frac{L(x_{1:n};\sigma_2^2)}{L(x_{1:n};\sigma_1^2)}=\displaystyle\prod_{i=1}^n\frac{(\frac{1}{\sqrt{2\pi}\sigma_2})^nexp\{-\frac{(x_i-\mu)^2}{2\sigma_2^2}\}}{(\frac{1}{\sqrt{2\pi}\sigma_1})^nexp\{-\frac{(x_i-\mu)^2}{2\sigma_2^1}\}}=(\frac{\sigma_{1}}{\sigma_2})^nexp\{\frac{1}{2}(\frac{1}{\sigma_1^2}-\frac{1}{\sigma_2^2})\displaystyle\sum_{i=1}^n(x_i-\mu)^2\} L(x1:n;σ12)L(x1:n;σ22)=i=1n(2π σ11)nexp{ 2σ21(xiμ)2}(2π σ21)nexp{ 2σ22(xiμ)2}=(σ2σ1)nexp{ 21(σ121σ221)i=1n(xiμ)2}它可以表示为 T ( x 1 : n ) = 1 σ 0 2 ∑ i = 1 n ( x i − μ ) 2 T(x_{1:n})=\frac{1}{\sigma_0^2}\sum_{i=1}^n(x_i-\mu)^2 T(x1:n)=σ021i=1n(xiμ)2的递增函数。而且,当 σ 2 = σ 0 2 \sigma^2=\sigma_0^2 σ2=σ02时, T ( x 1 : n ) = 1 σ 0 2 ∑ i = 1 n ( x i − μ ) 2 ∼ χ 2 ( n ) T(x_{1:n})=\frac{1}{\sigma_0^2}\sum_{i=1}^n(x_i-\mu)^2\sim\chi^2(n) T(x1:n)=σ021i=1n(xiμ)2χ2(n)。因此,对于假设 H 0 : σ 2 ≥ σ 0 2   v s .   H 1 : σ 2 < σ 0 2 ; H_0:\sigma^2 \ge \sigma_0^2\ vs.\ H_1:\sigma^2<\sigma_0^2; H0:σ2σ02 vs. H1:σ2<σ02;UMP拒绝域为 W I = { x 1 : n ∣ T ( x 1 : n ) < χ α 2 ( n ) } = { x 1 :

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值