多模态MLLM都是怎么实现的(9)-时序LLM是怎么个事儿?

本文探讨了时序预测在Transformer模型中的应用,指出标准Transformer在处理长序列和时序数据时的挑战,如计算资源消耗和序列长度问题。文章提出一种利用多模态训练方法,通过Patch Reprogramming和Prompt-as-Prefix(PAP)技术,将时序数据转换为Transformer可处理的形式,降低计算复杂度。实验结果显示这种方法在时序预测中有一定成效,但数据预处理工作复杂。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

时序预测这东西大家一般不陌生,随便举几个例子

     1- 金融,比如预测股票(股市有风险,入市需谨慎),纯用K线做,我个人不太推荐

     2- 天气,比如预测云图,天气预报啥的

     3- 交通,早晚高峰,堵车啥的,车啥时候加油,啥时候充电之类的

     4- 医疗,看你病史和喝酒的剂量建模,看你会不会得痛风啥的。

     反正很多很多吧,应用的场合也是比较广的。

     RNN,一般来讲时序LLM,其实天然和RNN,LSTM这些玩意契合,因为有本身RNN就有时间步的概念,也能部分解决长距离依赖,缺点训练费劲,也做不大,要不咋干不过Transformer呢?

     TCN,另外时间步卷积,Temporal Convolutional Networks ,使用卷积网络处理时序数据,具有更好的并行计算能力,但是为啥不用它呢,其实和它对NLP的道理差不多,通过野去做东西不适合序列化的任务。上下文和长距离它也不太行,想让它行就得做得更深,更复杂,效果还不一定好

      剩下就Transformer了,历史重担一肩挑,然后爱折腾人的黑手,又把时间序列任务强加给了Transformer...

      本次小周带你读论文就讲一下ICLR2024的一篇新论文

图片

     首先介绍这论文的主旨:

     1- Transformer啥都能干

     2- 能NLP,能ASR,还能VQA 

     3- 既然能整这么多的多模态,也不差加一个时间序列了吧?

     其实主旨真就是我介绍的这么3点

    我们看一下时间序列和Transformer不搭调的地方

    比如我随便找个时间序列曲线

    

图片

     随便拿几个点来训练行吗?那肯定不行啊,因为点和点要有相对关系的,那拿一些段来训练呢?

      拿一段来提取特征是可以的,但是如何把NLP里的东西和一段走势做mapping呢,一个最简单的办法就是给个文字描述对应一个波段或者几个波段

   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值