12/13章 真空中的静电场
常量
- 电子电量
e = 1.602 ∗ 1 0 − 19 C e=1.602*10^{-19}C e=1.602∗10−19C - 库仑定律比例常数
k k k - 真空介电常量
ε 0 = 1 4 π k = 8.85 × 1 0 − 12 C 2 / ( N ⋅ m 2 ) \varepsilon_0 = \frac{1}{4\pi k}=8.85 \times 10^{-12} C^2/(N \cdot m^2) ε0=4πk1=8.85×10−12C2/(N⋅m2) - 真空的磁导率
μ 0 = 4 π × 1 0 − 7 T ⋅ m / A \mu_0=4\pi\times 10^{-7} T\cdot m/A μ0=4π×10−7T⋅m/A
库仑定律
F 21 = k q 1 q 2 r 21 2 e r 21 = q 1 q 2 4 π ε 0 r 21 2 e r 21 \\ \textbf{F}_{21} = k \frac{q_1q_2}{r^2_{21}}e_{r21} = \frac{q_1q_2}{4\pi \varepsilon _0r_{21}^2} \textbf{e}_{r21} F21=kr212q1q2er21=4πε0r212q1q2er21
电场 电场强度(N/C or V/m)
- 电场强度
E = F q \\ E = \frac{F}{q} E=qF - 连续带电体的场强
E ⃗ = ∫ d E ⃗ = ∫ q d q ⋅ r ^ 4 π ε 0 r 2 d q = ρ d v d q = σ d s d q = λ d l \\ \vec{E}=\int d\vec{E}=\int_{q} \frac{dq \cdot \hat{r}}{4\pi \varepsilon_0 r^2} \\ dq = \rho dv \\ dq = \sigma ds \\ dq = \lambda dl E=∫dE=∫q4πε0r2dq⋅r^dq=ρdvdq=σdsdq=λdl
高斯定理
- 单位垂直面积上通过的电力线数目,等于该点场强的量值
E = lim Δ S ⊥ → 0 Δ N Δ S ⊥ = d N d S ⊥ \\ E=\lim_{\Delta S_\perp \to 0} \frac{\Delta N}{\Delta S_\perp}=\frac{dN}{dS_\perp} E=ΔS⊥→0limΔS⊥ΔN=dS⊥dN - 电通量
Φ
e
\Phi_e
Φe
Φ e = ∫ S E ⃗ ⋅ d s ⃗ \\ \Phi_e=\int_S \vec{E} \cdot d\vec{s} Φe=∫SE⋅ds - 在真空中的静电场内,通过任意闭合曲面的电通量等于 该曲面所包围电量的代数和除以
ε
0
\varepsilon_0
ε0
∮ S E ⃗ ⋅ d S ⃗ = ∑ i q i 内 ε 0 \\ \oint_S \vec{E} \cdot d\vec{S}=\frac{\sum_i q_{i内}}{\varepsilon_0} ∮SE⋅dS=ε0∑iqi内 - 平面角:单位弧度
d α = d l 0 r = d l r c o s θ \\ d\alpha = \frac{dl_0}{r} = \frac{dl}{r}cos\theta dα=rdl0=rdlcosθ
立体角:单位球面度
d Ω = d S r 2 c o s θ \\ d\Omega = \frac{dS}{r^2}cos\theta dΩ=r2dScosθ
静电场的环路定理
- 移动实验点电荷
q
0
q_0
q0,从
P
1
→
P
2
P_1 \rightarrow P_2
P1→P2,电场力做功:
A 12 = ∫ ( P 1 ) ( P 2 ) ( L ) q 0 E ⃗ ⋅ d l ⃗ = q 0 ∫ ( P 1 ) ( P 2 ) ( L ) E ⃗ ⋅ d l ⃗ \\ A_{12} = \mathop{\int_{(P_1)}^{(P_2)}} \limits_{(L)} q_0 \vec{E} \cdot d\vec{l} = q_0 \mathop{\int_{(P_1)}^{(P_2)}}\limits_{(L)} \vec{E} \cdot d\vec{l} A12=(L)∫(P1)(P2)q0E⋅dl=q0(L)∫(P1)(P2)E⋅dl
对点电荷
∫ ( p 1 ) ( p 2 ) ( L ) E ⃗ ⋅ d l ⃗ = q 4 π ε 0 ( 1 r 1 − 1 r 2 ) \\ \mathop{\int_{(p_1)}^{(p_2)}}\limits_{(L)} \vec{E} \cdot d\vec{l} = \frac{q}{4\pi \varepsilon_0}(\frac{1}{r_1}-\frac{1}{r_2}) (L)∫(p1)(p2)E⋅dl=4πε0q(r11−r21)
对点电荷系
∫ ( P 1 ) ( P 2 ) ( L ) E ⃗ ⋅ d l ⃗ = ∑ i q i 4 π ε 0 ( 1 r i 1 − 1 r i 2 ) \\ \mathop{\int_{(P_1)}^{(P_2)}}\limits _{(L)}\vec{E} \cdot d\vec{l} = \sum_i \frac{q_i}{4\pi \varepsilon_0}(\frac{1}{r_{i1}}-\frac{1}{r_{i2}}) (L)∫(P1)(P2)E⋅dl=i∑4πε0qi(ri11−ri21) - 环路定理:静电场中场强沿任意闭合环路的线积分恒等于0
∮ L E ⃗ ⋅ d l ⃗ = 0 \\ \oint \limits_L \vec{E}\cdot d\vec{l} = 0 L∮E⋅dl=0
电势
- 静电场力做功等于相应电势能的减少
A a b = ∫ ( a ) ( b ) f ⃗ ⋅ d l ⃗ = W a − W b \\ A_{ab} = \int \limits_{(a)}^{(b)}\vec{f}\cdot d\vec{l} = W_a-W_b Aab=(a)∫(b)f⋅dl=Wa−Wb - a,b两点电势差:单位V(伏特)
∫ ( a ) ( b ) E ⃗ ⋅ d l ⃗ = U a − U b \\ \int \limits_{(a)}^{(b)}\vec{E} \cdot d\vec{l} = U_a-U_b (a)∫(b)E⋅dl=Ua−Ub - 点电荷场电势公式
U = Q 4 π ε 0 r \\ U = \frac{Q}{4\pi \varepsilon_0 r} U=4πε0rQ - 任意带电体电势
U = ∫ ( P ) P ( 0 ) E ⃗ ⋅ d l ⃗ \\ U = \int \limits _{(P)}^{P(0)}\vec{E} \cdot d\vec{l} U=(P)∫P(0)E⋅dl
点电荷系
U = ∑ q i 4 π ε 0 r i , U ∞ = 0 \\ U = \sum \frac{q_i}{4 \pi \varepsilon_0 r_i}, \ \ U_\infty = 0 U=∑4πε0riqi, U∞=0
连续电荷
U = ∫ q d q 4 π ε 0 r , U ∞ = 0 \\ U = \int_q \frac{dq}{4\pi \varepsilon_0 r},\ \ U_\infty = 0 U=∫q4πε0rdq, U∞=0
均匀带电球面
U = { U = Q 4 π ε 0 R , r < R U = Q 4 π ε 0 r , r > R \\ U=\left\{ \begin{aligned} U=\frac{Q}{4\pi \varepsilon_0 R}, & r<R \\ U = \frac{Q}{4\pi \varepsilon_0 r}, & r>R \end{aligned} \right. U=⎩⎪⎪⎨⎪⎪⎧U=4πε0RQ,U=4πε0rQ,r<Rr>R
无限长均匀带电直线
U = λ 2 π ε 0 ln r 0 r \\ U = \frac{\lambda}{2\pi \varepsilon_0} \ln \frac{r_0}{r} U=2πε0λlnrr0 - 平行板电容器两板间的电势差
Δ U = E d \\ \Delta U = Ed ΔU=Ed
带点体系的静电能 静电场的能量
- 点电荷在外电场中的电势能
W = q U \\ W=qU W=qU - 电偶极子的电势能
W = − p ⃗ ⋅ E ⃗ \\ W = -\vec{p} \cdot \vec{E} W=−p⋅E - 静电场的相互作用能:把各点电荷由现在位置分散至相距无穷远的过程中电场力做的功。
两个点电荷系统
W 互 = q 2 U 21 W = 1 2 q 1 U 1 + 1 2 q 2 U 2 \\ W_互=q_2 U_{21} \\ W = \frac{1}{2}q_1U_1+\frac{1}{2}q_2U_2 W互=q2U21W=21q1U1+21q2U2
一般点电荷系
W 互 = 1 2 ∑ i q i U i \\ W_互= \frac{1}{2}\sum_i q_iU_i W互=21i∑qiUi - 连续带电体的静电能(自能):把电荷无限分割,并分散到相距无穷远时,电场力做的功。
只有一个带电体
W = W 自 = 1 2 ∫ q U d q \\ W = W_自 = \frac{1}{2}\int_q Udq W=W自=21∫qUdq
多个带电体
总 静 电 能 W = ∑ i W 自 i + ∑ i < j W 互 i j \\ 总静电能\ \ W = \sum_i W_{自i}+\sum_{i<j}W_{互ij} 总静电能 W=i∑W自i+i<j∑W互ij - 静电场的能量
电场能量密度
w e = d W d V = 1 2 ε 0 E 2 \\ w_e = \frac{dW}{dV} = \frac{1}{2}\varepsilon_0E^2 we=dVdW=21ε0E2
常见带电体的电场强度和电势
-
带电量为Q,半径为R的均匀带电细圆环在轴线上距离圆心x处的
d E = d q 4 π ε 0 r 2 , r 2 = x 2 + R 2 , cos θ = x r , d q = Q 2 π R d l d E x = d E cos θ = x d q 4 π ε 0 r 3 = x Q d l 8 π 2 R ε 0 r 3 E = ∫ d E x = ∫ 0 2 π R x Q 8 π 2 R ε 0 r 3 d l = x Q d l 8 π 2 R ε 0 r 3 ∣ 0 2 π R 电 场 强 度 : E = x Q 4 π ε 0 ( x 2 + R 2 ) 3 / 2 电 势 : U = Q 4 π ε 0 ( x 2 + R 2 ) 1 / 2 \\dE=\frac{dq}{4\pi \varepsilon_0 r^2}, \ r^2=x^2+R^2,\ \cos\theta=\frac{x}{r},\ dq=\frac{Q}{2\pi R}dl \\ dE_x=dE \cos \theta = \frac{xdq}{4\pi\varepsilon_0r^3}=\frac{xQdl}{8\pi^2 R\varepsilon_0r^3} \\ E=\int dE_x=\int_0^{2\pi R} \frac{xQ}{8\pi^2 R\varepsilon_0r^3}dl=\frac{xQdl}{8\pi^2R\varepsilon_0r^3}|_0^{2\pi R} \\ 电场强度:E=\frac{xQ}{4\pi\varepsilon_0(x^2+R^2)^{3/2}} \\ 电势:U=\frac{Q}{4\pi\varepsilon_0(x^2+R^2)^{1/2}} dE=4πε0r2dq, r2=x2+R2, cosθ=rx, dq=2πRQdldEx=dEcosθ=4πε0r3xdq=8π2Rε0r3xQdlE=∫dEx=∫02πR8π2Rε0r3xQdl=8π2Rε0r3xQdl∣02πR电场强度:E=4πε0(x2+R2)3/2xQ电势:U=4πε0(x2+R2)1/2Q -
电荷线密度为λ的无限长带电直线外的
∮ S E d s = λ l ε 0 E 2 π r l = λ l ε 0 电 场 强 度 : E = λ 2 π ε 0 r 电 势 ( 取 到 无 限 长 带 电 直 线 距 离 为 r 0 为 电 势 零 点 ) : U = ∫ r r 0 E d r = λ 2 π ε 0 ln r 0 r \\ \oint_S Eds=\frac{\lambda l}{\varepsilon_0} \\ E 2\pi rl=\frac{\lambda l}{\varepsilon_0} \\ 电场强度:E=\frac{\lambda}{2\pi \varepsilon_0 r} \\ 电势(取到无限长带电直线距离为r_0为电势零点):U=\int_r^{r_0} Edr=\frac{\lambda}{2\pi \varepsilon_0}\ln \frac{r_0}{r} ∮SEds=ε0λlE2πrl=ε0λl电场强度:E=2πε0rλ电势(取到无限长带电直线距离为r0为电势零点):U=∫rr0Edr=2πε0λlnrr0 -
电荷量密度为σ,半径为R的均匀带电圆盘在轴线上距离圆心x处的
l 2 = x 2 + r 2 , d q = σ d s = σ 2 π r d r , c o s θ = x l d E = d q 4 π ε 0 l 2 = σ r d r 2 ε 0 l 2 , d E x = d E c o s θ = σ x r d r 2 ε 0 l 3 E = ∫ 0 R σ x r d r 2 ε 0 ( x 2 + r 2 ) 3 / 2 = − σ x 2 ε 0 x 2 + r 2 ∣ 0 R 电 场 强 度 : E = σ 2 ε 0 ( 1 − x x 2 + R 2 ) 电 势 : U = σ 2 ε 0 ( x 2 + R 2 − x ) \\ l^2=x^2+r^2,\ dq=\sigma ds=\sigma 2\pi rdr,\ cos\theta=\frac{x}{l} \\ dE=\frac{dq}{4\pi\varepsilon_0 l^2}=\frac{\sigma rdr}{2\varepsilon_0 l^2},\ dE_x=dEcos\theta=\frac{\sigma xrdr}{2\varepsilon_0 l^3} \\ E=\int_0^R\frac{\sigma xrdr}{2\varepsilon_0 (x^2+r^2)^{3/2}}=-\frac{\sigma x}{2\varepsilon_0 \sqrt{x^2+r^2}}|_0^R \\ 电场强度:E=\frac{\sigma}{2\varepsilon_0}(1-\frac{x}{\sqrt{x^2+R^2}}) \\ 电势:U=\frac{\sigma}{2\varepsilon_0}(\sqrt{x^2+R^2}-x) l2=x2+r2, dq=σds=σ2πrdr, cosθ=lxdE=4πε0l2dq=2ε0l2σrdr, dEx=dEcosθ=2ε0l3σxrdrE=∫0R2ε0(x2+r2)3/2σxrdr=−2ε0x2+r2σx∣0R电场强度:E=2ε0σ(1−x2+R2x)电势:U=2ε0σ(x2+R2−x) -
电荷量密度为σ的无限大均匀带电平板
电 场 强 度 : E = σ 2 ε 0 \\ 电场强度:E=\frac{\sigma}{2\varepsilon_0} 电场强度:E=2ε0σ -
长度为2L的均匀带电细棒,电荷线密度为λ,中垂线上的
电 场 强 度 : E = λ L 2 π ε 0 y L 2 + y 2 电 势 : U = λ 4 π ε 0 l n L + L 2 + y 2 − L + L 2 + y 2 \\ 电场强度:E=\frac{\lambda L}{2\pi\varepsilon_0y\sqrt{L^2+y^2}} \\ 电势:U=\frac{\lambda}{4\pi\varepsilon_0}ln\frac{L+\sqrt{L^2+y^2}}{-L+\sqrt{L^2+y^2}} 电场强度:E=2πε0yL2+y2λL电势:U=4πε0λln−L+L2+y2L+L2+y2 -
长度为2L、半径为R的圆柱面均匀带电,面电荷密度为σ,圆柱面外轴线上
电 场 强 度 : E = R σ 2 ε 0 [ 1 ( x − L ) 2 + R 2 − 1 ( x + L ) 2 + R 2 ] 电 势 : U = R σ 2 ε 0 l n x + L + ( x + L ) 2 + R 2 x − L + ( x + L ) 2 + R 2 \\ 电场强度:E=\frac{R\sigma}{2\varepsilon_0}[\frac{1}{\sqrt{(x-L)^2+R^2}}-\frac{1}{(x+L)^2+R^2}] \\ 电势:U=\frac{R\sigma}{2\varepsilon_0}ln\frac{x+L+\sqrt{(x+L)^2+R^2}}{x-L+\sqrt{(x+L)^2+R^2}} 电场强度:E=2ε0Rσ[(x−L)2+R21−(x+L)2+R21]电势:U=2ε0Rσlnx−L+(x+L)2+R2x+L+(x+L)2+R2 -
半径为R的球面上均匀分布面密度为σ的电荷,球面外x的
电 场 强 度 : E = Q 4 π ε 0 x 2 电 势 : U = Q 4 π ε 0 x \\ 电场强度:E=\frac{Q}{4\pi\varepsilon_0 x^2} \\ 电势:U=\frac{Q}{4\pi\varepsilon_0x} 电场强度:E=4πε0x2Q电势:U=4πε0xQ -
半径为R的球体上均匀分布体密度为ρ的电荷,球外x的
电 场 强 度 : E = Q 4 π ε 0 x 2 电 势 : U = Q 4 π ε 0 x \\ 电场强度:E=\frac{Q}{4\pi\varepsilon_0 x^2} \\ 电势:U=\frac{Q}{4\pi\varepsilon_0x} 电场强度:E=4πε0x2Q电势:U=4πε0xQ
14章 静电场中的导体
14.1 导体的静电平衡条件
- 静电平衡状态:导体内部和表面无自由电荷移动的状态。
这种过程非常快,一种静电平衡状态被破坏,马上建立起新的静电平衡状态。
导体静电平衡的条件
- 用场强来表述
(1) E ⃗ 内 = 0 \vec{E}_内=0 E内=0
(2) E ⃗ 表 ⊥ 表 面 \vec{E}_表\perp 表面 E表⊥表面 - 用电势来表述
导体是等势体:导体等势是导体内电场强度处处为零得到必然结果。
表面是等势面 - 接地
14.2 静电平衡时导体上的电荷分布规律
- 导体静电平衡时电荷分布在表面
- 实心导体: σ \sigma σ可以不为0,,但 ρ 内 \rho_内 ρ内必为0。
- 导体壳(内无电荷): σ 外 \sigma_外 σ外可不为0,但 σ 内 \sigma_内 σ内和 E ⃗ 内 \vec{E}_内 E内必为0。
- 导体壳内有电荷:
σ
外
\sigma_外
σ外可不为0,但必有
σ
内
≠
0
\sigma_内\neq 0
σ内=0,且
q
内
表
=
∮
S
σ
内
d
s
=
−
q
q_内表=\oint_S\sigma_内ds=-q
q内表=∮Sσ内ds=−q
导体体内处处不带电,导体带电只能在表面
- 表面场强与面电荷密度的关系
E 表 = σ ε 0 , E ⃗ 表 = σ ε 0 r ^ \\ E_表=\frac{\sigma}{\varepsilon_0}, \vec{E}_表=\frac{\sigma}{\varepsilon_0}\hat{r} E表=ε0σ,E表=ε0σr^ - 孤立导体表面电荷分布的特点
表面凸出的尖锐部分(曲率是正值且较大)电荷面密度较大
比较平坦部分(曲率较小)电荷面密度较小
表面凹进的部分,带点面密度最小
14.3 有导体存在时静电场的分析与计算
分析原则:
- 静电平衡的条件
E 内 = 0 , o r U = c \\ E_内=0,\ \ or\ U=c E内=0, or U=c - 基本性质方程
∮ S E ⃗ ⋅ d S ⃗ = ∑ i q i ε 0 , ∮ L E ⃗ ⋅ d l ⃗ = 0 \\ \oint_S \vec{E}\cdot d\vec{S}=\frac{\sum_iq_i}{\varepsilon_0},\ \ \oint_L\vec{E}\cdot d\vec{l}=0 ∮SE⋅dS=ε0∑iqi, ∮LE⋅dl=0 - 电荷守恒定律
∑ i Q i = c o n s t \\ \sum_iQ_i=const i∑Qi=const
*14.4 静电场的唯一性定理、静电屏蔽
15章 静电场中的电介质
15.1 电介质及其极化
- 极板电量不变时,在极间充满各向同性均匀电介质前后的场强关系为
E ⃗ = E 0 ⃗ ε r \\ \vec{E} = \frac{\vec{E_0}}{\varepsilon_r} E=εrE0 -
ε
r
\varepsilon_r
εr——介质的相对介电常数(相对电容率)
ε r ≥ 1 \\ \varepsilon_r \ge 1 εr≥1 - 面束缚电荷密度
σ
′
\sigma'
σ′,电极化强度
P
P
P
σ ′ = d q ′ d S = P n = P ⃗ ⋅ n ^ \\ \sigma'=\frac{dq'}{dS}=P_n=\vec{P}\cdot \hat{n} σ′=dSdq′=Pn=P⋅n^ - 极化体电荷
ρ
′
\rho'
ρ′
ρ ′ = − ∇ ⋅ P ⃗ = − ( ∂ P x ∂ x + ∂ P y ∂ y + ∂ P z ∂ z ) \\ \rho' =-\nabla\cdot \vec{P}=-(\frac{\partial P_x}{\partial x}+\frac{\partial P_y}{\partial y}+\frac{\partial P_z}{\partial z}) ρ′=−∇⋅P=−(∂x∂Px+∂y∂Py+∂z∂Pz)
电介质的极化规律
- 各向同性电介质
E E E不太强时,
P ⃗ = ε 0 ( ε r − 1 ) E ⃗ = ε 0 χ e E ⃗ 介 质 的 电 极 化 率 χ e = ε r − 1 ≥ 0 \\ \vec{P}=\varepsilon_0 (\varepsilon_r-1) \vec{E}=\varepsilon_0 \chi_e\vec{E} \\介质的电极化率\chi_e=\varepsilon_r-1 \ge 0 P=ε0(εr−1)E=ε0χeE介质的电极化率χe=εr−1≥0
15.2 电位移矢量 D ⃗ \vec{D} D 有介质时的高斯定理
- 电位移、电感强度
D
⃗
\vec{D}
D
量纲 ⌊ D ⃗ ⌋ = ⌊ P ⃗ ⌋ = ⌊ σ ⌋ \left \lfloor \vec{D}\right\rfloor=\left\lfloor\vec{P}\right\rfloor=\left\lfloor\sigma\right\rfloor ⌊D⌋=⌊P⌋=⌊σ⌋,单位 C / m 2 C/m^2 C/m2
D ⃗ = ε 0 E ⃗ + P ⃗ P ⃗ = ε 0 ( ε r − 1 ) E ⃗ D ⃗ = ε 0 ε r E ⃗ = ε E ⃗ 介 质 的 介 电 常 数 ( 电 容 率 ) ε = ε 0 ε r \\ \vec{D}=\varepsilon_0 \vec{E} +\vec{P} \\ \vec{P}=\varepsilon_0(\varepsilon_r-1)\vec{E} \\ \vec{D}=\varepsilon_0\varepsilon_r\vec{E}=\varepsilon\vec{E} \\介质的介电常数(电容率)\varepsilon=\varepsilon_0\varepsilon_r D=ε0E+PP=ε0(εr−1)ED=ε0εrE=εE介质的介电常数(电容率)ε=ε0εr -
D
⃗
\vec{D}
D的高斯定理
高斯定理始终成立,但只有在具有某种对称性的情况下,可以解出 D ⃗ \vec{D} D
∮ S D ⃗ ⋅ d S ⃗ = ∑ q 0 内 \\ \oint_S \vec{D}\cdot d\vec{S}=\sum q_{0内} ∮SD⋅dS=∑q0内
15.3 静电场的边值关系(边界条件)
- 界面的法向
- 界面的切向
- 对各向同性介质交界面
15.4 电容器及其电容
- 孤立导体的电容
C
C
C
C = Q U , 单 位 : 法 拉 F \\ C=\frac{Q}{U},单位:法拉F C=UQ,单位:法拉F
真空中孤立导体球的电容 C = 4 π ε 0 R C=4\pi \varepsilon_0R C=4πε0R - 电容器的电容 C = Q Δ U C=\frac{Q}{\Delta U} C=ΔUQ
- 有介质时电容器的电容
C = ε r C 0 \\ C=\varepsilon_r C_0 C=εrC0
填充介质 → \to →增大电容
15.5 电容器的能量、有介质时的电场能量
- 导体组的静电能
W = ∑ i 1 2 Q i U i \\ W=\sum_i\frac{1}{2}Q_iU_i W=i∑21QiUi - 电容器的能量
W = 1 2 Q 2 C \\ W=\frac{1}{2}\frac{Q^2}{C} W=21CQ2 - 有介质时静电场的能量密度
平板电容器
C = Q U = Q E d = Q Q ε S d = ε S d w e = 1 2 ε E 2 = 1 2 D ⃗ ⋅ E ⃗ \\C=\frac{Q}{U}=\frac{Q}{Ed}=\frac{Q}{\frac{Q}{\varepsilon S}d}=\frac{\varepsilon S}{d} \\ w_e=\frac{1}{2}\varepsilon E^2=\frac{1}{2}\vec{D}\cdot\vec{E} C=UQ=EdQ=εSQdQ=dεSwe=21εE2=21D⋅E
*铁电体和压电效应
16章 恒定电流
16.1 电流密度
- 电流强度
I = d q d t I=\frac{dq}{dt} I=dtdq - 电流密度
j ⃗ = d I d S ⊥ v ^ \vec{j}=\frac{dI}{dS_\perp}\hat{v} j=dS⊥dIv^
j ⃗ \vec{j} j的方向 / / v ^ //\hat{v} //v^
j ⃗ \vec{j} j的大小 j = ∣ j ⃗ ∣ = d I d S ⊥ j=|\vec{j}|=\frac{dI}{dS_\perp} j=∣j∣=dS⊥dI - 对任意曲面S,
I
=
∫
S
d
I
=
∫
S
j
⃗
⋅
d
S
⃗
I=\int_SdI=\int_S\vec{j}\cdot d\vec{S}
I=∫SdI=∫Sj⋅dS
电流线,某点的切向与该点 j ⃗ \vec{j} j的方向一致;密度等于 j j j,即 d N d S ⊥ = j \frac{dN}{dS_\perp}=j dS⊥dN=j - 电流密度矢量
j ⃗ = n q v ⃗ \\ \vec{j}=nq\vec{v} j=nqv
若载流子速度不同,速度为 v ⃗ i 的 载 流 子 数 目 为 n i \vec v_i 的载流子数目为n_i vi的载流子数目为ni
j ⃗ = ∑ i j ⃗ i = ∑ i n i q v ⃗ i = n q ∑ i n i v ⃗ i n = n q < v ⃗ > \\ \vec j=\sum_i\vec j_i=\sum_in_iq\vec v_i=nq\frac{\sum_in_i\vec v_i}{n}=nq<\vec v> j=i∑ji=i∑niqvi=nqn∑inivi=nq<v>
载流子平均定向流动速度,漂移速度 < v ⃗ > <\vec v> <v>
16.2 恒定电流与恒定电场
- 恒定电流(直流电)
对任一封闭面满足
d Q d t = 0 → { ∮ S j ⃗ ⋅ d s ⃗ = 0 , 积 分 形 式 ∇ ⋅ j ⃗ = 0 , 微 分 形 式 \\ \frac{dQ}{dt}=0\to \left\{ \begin{aligned} \oint_S\vec j\cdot d\vec s=0,积分形式 \\ \nabla \cdot \vec j=0,微分形式 \end{aligned} \right. dtdQ=0→⎩⎪⎨⎪⎧∮Sj⋅ds=0,积分形式∇⋅j=0,微分形式
恒定电流的电路必须闭合
必须有非静电力存在,使正电荷从低电势到高电势 - 基尔霍夫第一定律
对电路的节点, I 入 = I 出 I_入=I_出 I入=I出
∮ S j ⃗ ⋅ d s ⃗ = 0 → ∑ i I i = 0 \\ \oint_S\vec j\cdot d\vec s=0\to \sum_iI_i=0 ∮Sj⋅ds=0→i∑Ii=0 - 恒定电场
由不随时间改变的电荷分布产生 - 恒定电场和静电场的异同
- 相同之处:
电荷分布和电场分布都不随时间改变
满足高斯定理
满足环路定理 是保守场 ∮ L E ⃗ ⋅ d l ⃗ = 0 \oint_L\vec E\cdot d\vec l=0 ∮LE⋅dl=0
可引入电势概念
恒定电流的电路中各点都有确定的电势 - 不同之处
激发静电场的电荷是静止的;产生恒定电流的电荷是运动的电荷,是电荷分布不随时间改变
静电场,导体内部的静电场为0,维持静电场不需要能量;恒定电场对运动电荷要做功,导体内部恒定电场不为0,维持恒定电场需要能量(伴随着能量的转移)
- 相同之处:
16.3 电动势 e m f emf emf
- 非静电性场强
E ⃗ K = F ⃗ K q \\ \vec E_K=\frac{\vec F_K}{q} EK=qFK
电动势:电源内负极到正极的方向
ε = ∫ − + E ⃗ K ⋅ d l ⃗ \\ \varepsilon=\int_-^+\vec E_K\cdot d\vec l ε=∫−+EK⋅dl
16.4 欧姆定律的微分形式
- 欧姆定律
U a b = I R \\ U_{ab} = IR Uab=IR - 对于一段均匀导体
电 阻 : R = ρ ⋅ L S \\ 电阻:R=\rho\cdot \frac{L}{S} 电阻:R=ρ⋅SL
ρ \rho ρ电阻率,单位 Ω ⋅ m \Omega\cdot m Ω⋅m
电 导 : G = 1 R = 1 ρ S L = σ S L 单 位 : 1 Ω = S ( 西 门 子 ) \\ 电导:G=\frac{1}{R}=\frac{1}{\rho}\frac{S}{L}=\sigma\frac{S}{L} \\ 单位:\frac{1}{\Omega}=S(西门子) 电导:G=R1=ρ1LS=σLS单位:Ω1=S(西门子)
σ \sigma σ电导率,单位: 1 Ω ⋅ m \frac{1}{\Omega\cdot m} Ω⋅m1 - 欧姆定律微分形式
− d U = j d S ⋅ ρ ⋅ d l d S j = − 1 ρ d U d l = σ ⋅ E j ⃗ = σ E ⃗ \\ -dU=jdS\cdot \rho\cdot\frac{dl}{dS} \\ j=-\frac{1}{\rho}\frac{dU}{dl}=\sigma\cdot E \\ \vec j=\sigma \vec E −dU=jdS⋅ρ⋅dSdlj=−ρ1dldU=σ⋅Ej=σE - 基尔霍夫第二定律
∑ ε i = ∑ I i R i \\ \sum \varepsilon_i=\sum I_iR_i ∑εi=∑IiRi