基本逻辑思维(命题,语言,定律)
语言:
在数学、计算机科学和语言学中,形式语言是必不可少的一组符号串。
程序设计语言:
一种设计用来向机器传达指令以控制其行为的语言。
关于情境的推理包括复杂的句子和自然语言的“逻辑连接词”,
如“not”、“and”、“or”这些并不是推动逻辑推理的唯一表达方式,
但它们确实构成了最基本的层次。
定义语言:
1.至少涉及两种语言:
目标语言-被定义的语言;元语言-用于定义元语言的语言;
2.目标语言有两个方面:语法-书写规则;其语义
定义语法:
包括两个步骤:
1.定义符号,然后
2.定义更大的结构。
例如自然语言的单词、句子等,
命题变量:
用来代表命题,名称通常缩写命题。
命题连接词:
1.命题逻辑的“运算”与算术中的+、-、/、*等类似;
2.帮助形成复合命题。
每个连接词都有一个特定的意义,即它的“语义”
命题逻辑的顺序:
1.最高是 ¬ p,然后是 ∨; ∧; ⇒,最后是 ⇔。
2.遵循从右到左
负号
For a proposition p:
• negation is written ¬ p,
• usually pronounced “not p”,
• meaning of ¬ p is “proposition p is false”.
负号定则
• ¬ true = false, and ¬ false = true;
• for any p: ¬ ¬ p = p (law of double negation)
分离
For propositions p, q:
• written p ∨ q,
• usually pronounced “p or q”,
• is true if ‘either p is true, or q is true, or both,
• p and q are often called disjuncts.
分离定则
p ∨ ¬ p = true ‘the law of the excluded middle.’
连接
For propositions p and q:
• written p ∧ q,
• usually pronounced “p and q”,
• is true if ‘both p is true and q is true’
• p and q are often called conjuncts.
连接定则
p ∧ ¬ p = false.
推导
For propositions p and q:
• written p ⇒ q,
• usually pronounced “p implies q”, or “if p then q”,
• p is the premise and q is the conclusion.
• Means: ‘if p is true, then q must be true’.
推导定则
(p ⇒ q) is equivalent to (¬ q ⇒ ¬ p).
If (p ⇒ q) is a TRUE statement then (¬ q ⇒ ¬ p) is TRUE.
If (¬ q ⇒ ¬ p) is a TRUE statement then (p ⇒ q) is TRUE
平等
For propositions p and q:
written p ⇔ q,
usually pronounced
“p is equivalent to q”, or “p, if and only if q”
平等定则
p ⇔ q is equivalent to (p ⇒ q) ∧ (q ⇒ p).
运算法则
交换性:
p ∨ q ⇔ q ∨ p p ∧ q ⇔ q ∧ p;
关联性:
p ∨ (q ∨ r) ⇔ (p ∨ q) ∨ r
p ∧ (q ∧ r) ⇔ (p ∧ q) ∧ r
幂等性:
p ∨ p ⇔ p and p ∧ p ⇔ p
分散性
p ∨ (q ∧ r) ⇔ (p ∨ q) ∧ (p ∨ r)
p ∧ (q ∨ r) ⇔ (p ∧ q) ∨ (p ∧ r)
德摩根定律:
¬(p ∨ q) ⇔ ¬ p ∧ ¬ q
¬(p ∧ q) ⇔ ¬ p ∨ ¬ q
双重否定性
¬(¬ p) ⇔ p;
重言法
p ∨ true ⇔ true
p ∧ true ⇔ p
矛盾律:
p ∨ false ⇔ p p ∧ false ⇔ false
排除中间定律:
p ∨ ¬ p ⇔ true
p ∧ ¬ p ⇔ false
吸收定律
p ∨ (p ∧ q) ⇔ p p ∧ (p ∨ q) ⇔ p
蕴含定律
p ⇒ q ⇔ ¬ p ∨ q
推导定律
p ⇒ q ⇔ ¬ q ⇒ ¬ p
平等定律
(p ⇔ q) ⇔ (p ⇒ q) ∧ (q ⇒ p)
命题
**命题逻辑:**使用精心选择的表示法理解,便于计算和操作。
原子命题:只能是“true”或“false”的语句
**复合命题:**陈述命题之间的关系,例如
“我的鹦鹉死了或者我的表停了”
“我醒了,我很享受这个讲座”
命题陈述:可以是真或假的句子或表达
演绎
演绎是一个包含三个步骤的过程:
1.从前提出发——真实命题;
2.从中推断;
3.给出了一个结论,作为真值。
解决步骤
1确定命题并用变量表示
(回忆一个命题可以是真的也可以是假的)
2试着用以下形式重新表述暗示语句:
如果…那么…
解决策略…
3.用命题逻辑变量表示语句。
4使用推理规则得出推论
应用如下:
- Babies are illogical.
(B ⇒ I) - Nobody is despised who can manage a crocodile.
(M ⇒ ¬D) - Illogical people are despised.
(I ⇒ D)