基本逻辑思维(命题,语言,定律)

基本逻辑思维(命题,语言,定律)

语言:

在数学、计算机科学和语言学中,形式语言是必不可少的一组符号串。
程序设计语言:
一种设计用来向机器传达指令以控制其行为的语言。
关于情境的推理包括复杂的句子和自然语言的“逻辑连接词”,
如“not”、“and”、“or”这些并不是推动逻辑推理的唯一表达方式,
但它们确实构成了最基本的层次。
定义语言:
1.至少涉及两种语言:
目标语言-被定义的语言;元语言-用于定义元语言的语言;
2.目标语言有两个方面:语法-书写规则;其语义

定义语法:
包括两个步骤:
1.定义符号,然后
2.定义更大的结构。
例如自然语言的单词、句子等,

命题变量:
用来代表命题,名称通常缩写命题。

命题连接词:
1.命题逻辑的“运算”与算术中的+、-、/、*等类似;
2.帮助形成复合命题。
每个连接词都有一个特定的意义,即它的“语义”

命题逻辑的顺序:

1.最高是 ¬ p,然后是 ∨; ∧; ⇒,最后是 ⇔。
2.遵循从右到左

负号
For a proposition p:
• negation is written ¬ p,
• usually pronounced “not p”,
• meaning of ¬ p is “proposition p is false”.
负号定则
• ¬ true = false, and ¬ false = true;
• for any p: ¬ ¬ p = p (law of double negation)

分离
For propositions p, q:
• written p ∨ q,
• usually pronounced “p or q”,
• is true if ‘either p is true, or q is true, or both,
• p and q are often called disjuncts.
分离定则
p ∨ ¬ p = true ‘the law of the excluded middle.’

连接
For propositions p and q:
• written p ∧ q,
• usually pronounced “p and q”,
• is true if ‘both p is true and q is true’
• p and q are often called conjuncts.
连接定则
p ∧ ¬ p = false.

推导
For propositions p and q:
• written p ⇒ q,
• usually pronounced “p implies q”, or “if p then q”,
• p is the premise and q is the conclusion.
• Means: ‘if p is true, then q must be true’.
推导定则
(p ⇒ q) is equivalent to (¬ q ⇒ ¬ p).
If (p ⇒ q) is a TRUE statement then (¬ q ⇒ ¬ p) is TRUE.
If (¬ q ⇒ ¬ p) is a TRUE statement then (p ⇒ q) is TRUE

平等
For propositions p and q:
written p ⇔ q,
usually pronounced
“p is equivalent to q”, or “p, if and only if q”
平等定则
p ⇔ q is equivalent to (p ⇒ q) ∧ (q ⇒ p).

运算法则

交换性:
p ∨ q ⇔ q ∨ p p ∧ q ⇔ q ∧ p;
关联性:
p ∨ (q ∨ r) ⇔ (p ∨ q) ∨ r
p ∧ (q ∧ r) ⇔ (p ∧ q) ∧ r
幂等性:
p ∨ p ⇔ p and p ∧ p ⇔ p
分散性
p ∨ (q ∧ r) ⇔ (p ∨ q) ∧ (p ∨ r)
p ∧ (q ∨ r) ⇔ (p ∧ q) ∨ (p ∧ r)
德摩根定律:
¬(p ∨ q) ⇔ ¬ p ∧ ¬ q
¬(p ∧ q) ⇔ ¬ p ∨ ¬ q
双重否定性
¬(¬ p) ⇔ p;
重言法
p ∨ true ⇔ true
p ∧ true ⇔ p
矛盾律:
p ∨ false ⇔ p p ∧ false ⇔ false
排除中间定律:
p ∨ ¬ p ⇔ true
p ∧ ¬ p ⇔ false
吸收定律
p ∨ (p ∧ q) ⇔ p p ∧ (p ∨ q) ⇔ p
蕴含定律
p ⇒ q ⇔ ¬ p ∨ q
推导定律
p ⇒ q ⇔ ¬ q ⇒ ¬ p
平等定律
(p ⇔ q) ⇔ (p ⇒ q) ∧ (q ⇒ p)

命题

**命题逻辑:**使用精心选择的表示法理解,便于计算和操作。
原子命题:只能是“true”或“false”的语句
**复合命题:**陈述命题之间的关系,例如
“我的鹦鹉死了或者我的表停了”
“我醒了,我很享受这个讲座”
命题陈述:可以是真或假的句子或表达

演绎

演绎是一个包含三个步骤的过程:
1.从前提出发——真实命题;
2.从中推断;
3.给出了一个结论,作为真值。

解决步骤

1确定命题并用变量表示
(回忆一个命题可以是真的也可以是假的)
2试着用以下形式重新表述暗示语句:
如果…那么…
解决策略…
3.用命题逻辑变量表示语句。
4使用推理规则得出推论
应用如下:

  1. Babies are illogical.
    (B ⇒ I)
  2. Nobody is despised who can manage a crocodile.
    (M ⇒ ¬D)
  3. Illogical people are despised.
    (I ⇒ D)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值