根据分析命题来判断真假
首先得掌握基本的规则:
负号
¬ ∀x P(x) ⇔ ∃x ¬ P(x);
¬ ∃x P(x) ⇔ ∀x ¬ P(x);
拆分合并
• ∀x (P(x) ∧ Q(x)) ⇔ (∀x P(x)) ∧ (∀x Q(x)),
• ∃x (P(x) ∨ Q(x)) ⇔ (∃x P(x)) ∨ (∃x Q(x)),
调换顺序意义不同
• ∀x ∃y P(x, y)不等于∃y ∀x P(x, y).
练习题1:
题目是:∀x∃y(x + y = 0)
答案是正确的: if you pick any x, I can find a y that makes x+y=0 true.
题目是:∃y∀x(x + y = 0)
答案是错误的: there is no y that will make x+y=0 true for every x.
练习题2:
设F(x,y)是表示“x可以愚弄y”的谓词
1.每个人都能愚弄弗雷德
2.伊芙琳可以愚弄所有人
3.人人都能愚弄人
4.没有人能愚弄每个人
5.每个人都可能被人愚弄
6.没有人能同时愚弄弗雷德和杰瑞
所对应的表达方式为:
1.∀xF(x, Fred)
2.∀xF(Evelyn, x)
3.∀x∃yF(x, y)
4.¬∃x∀yF(x, y)
5.∀x∃yF( y, x)
6.¬∃x(F(x, Fred) ∧ F(x, Jerry))
练习题3:
B(x)=“x是一只蜜蜂”
F(x)=“x是一朵花”
L(x,y)=“x喜欢y”
1所有的蜜蜂都喜欢所有的花-----∀x∀y[[B(x) ∧ F( y)]⇒ L(x, y)]
解释:连词表示x是蜜蜂,y是花。
如果是这样的话,那么我们可以推断x(蜜蜂)喜欢y(花)
2蜜蜂只喜欢花------∀x∀y[[B(x) ∧ L(x, y)]⇒ F( y)]
解释:x是蜜蜂和y是x(蜜蜂)喜欢的东西。
总结
量词(Quantifier):¬∃M (x) ⇔ ∀x¬M (x)
等价:¬∀xM (x) ⇔ ∃x¬M (x)
蕴涵律(Implication Law):(A ⇒ B) ⇔ (¬A∨ B)
德莫根:¬(A∨ B) ⇔ (¬A∧ ¬B);¬(A∧ B) ⇔ (¬A∨ ¬B)