本课程结束时,您将能够:
通过开发Python发布者订阅节点,实现机器人的闭环(基于里程计)控制。
解释基于里程计的运动控制方法的局限性,并确定可用于增强这一点的其他反馈信号。
解释发布到/扫描主题的数据,并使用现有的ROS工具将其可视化。
使用现有的ROS工具实施SLAM并构建环境地图。
利用现有的ROS库,让机器人使用您生成的地图自主地在环境中导航。
解释这些SLAM和导航工具是如何实现的,以及需要哪些信息才能使它们工作。
练习1:让你的机器人沿着正方形的运动路径移动
move_square.py
激光位移数据与激光雷达传感器
里程计对机器人导航非常重要,但它可能会随着时间的推移而漂移和累积误差,正如您在之前的练习中所观察到的(尽管在模拟中比在真实机器人上更好!)幸运的是,我们的机器人上还有另一个传感器,它可以提供更丰富的环境信息,我们可以用它来补充里程计信息,增强机器人的导航能力。
练习2:使用RViz可视化机器人数据
[TERMINAL