summary3 实现SLAM和导航工具[python][AI]

本教程涵盖了使用ROS进行机器人导航的基础,包括通过里程计控制机器人、理解激光雷达数据、使用RViz可视化、实施SLAM构建环境地图,以及最终让机器人在生成的地图上自主导航。
摘要由CSDN通过智能技术生成

本课程结束时,您将能够:
通过开发Python发布者订阅节点,实现机器人的闭环(基于里程计)控制。
解释基于里程计的运动控制方法的局限性,并确定可用于增强这一点的其他反馈信号。
解释发布到/扫描主题的数据,并使用现有的ROS工具将其可视化。
使用现有的ROS工具实施SLAM并构建环境地图。
利用现有的ROS库,让机器人使用您生成的地图自主地在环境中导航。
解释这些SLAM和导航工具是如何实现的,以及需要哪些信息才能使它们工作。

练习1:让你的机器人沿着正方形的运动路径移动
move_square.py

激光位移数据与激光雷达传感器
里程计对机器人导航非常重要,但它可能会随着时间的推移而漂移和累积误差,正如您在之前的练习中所观察到的(尽管在模拟中比在真实机器人上更好!)幸运的是,我们的机器人上还有另一个传感器,它可以提供更丰富的环境信息,我们可以用它来补充里程计信息,增强机器人的导航能力。

练习2:使用RViz可视化机器人数据

 [TERMINAL 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值