命题逻辑研究中的健全性和完整性

稳健性(Soundness),完整性(completeness)和一致性(Consistency)

任何逻辑的两个重要属性是
稳健性:Γ ⊢ α ⇒ Γ |= α
完整性:Γ |= α ⇒ Γ ⊢ α

可靠性保证人们不能从真实的假设中推断出错误
可以推断出真实假设的所有后果的完整性
一阶逻辑具有三个(经常被忽视的)结构规则——弱化、收缩和排列,如下所示:

Γ⊢A/Γ,B⊢A(弱化)
Γ,B,B⊢A/Γ,B⊢A(收缩)
Γ1,B,C,Γ2⊢A/Γ1,C,B,Γ2⊢A(置换)

弱化规则让你可以任意添加假设。

因此,正式地,您可以写成 Δ−Γ={A1,…,An} 并通过归纳法进行。

然而,在实践中,我们通常通过假设上下文是一个多重集而不是有序列表来忽略它们。

对于完整性/完整性证明,我们考虑限制语法
Φ ::= ⊥ | p | (Φ ∧ Φ) | (Φ → Φ)
回想一下,我们处于经典逻辑中,因此我们可以推导出其他连接词。
¬α ⊣⊢ α → ⊥
⊤ ⊣⊢ ¬⊥
α ∨ β ⊣⊢ ¬(¬α ∧ ¬β)
我们不需要单独考虑它们

我们将证明稳健性定理:
如果 Γ ⊆ Φ 和 α ∈ Φ,则 Γ ⊢ α ⇒ Γ |= α
每当Γ ⊢ α 时,我们想证明某事是真的。 这意味着有证据树,其假设在 Γ 中,其结论为 α。
我们将通过考虑证明树而不是陈述 α 本身。

因为我们要证明一些关于递归构造的证明树的东西,所以我们将采用:
非空树的结构归纳原理
为了证明声明 Cl(t) 对所有非空树 t 成立,足以:
基本情况:证明 Cl 适用于所有单元素树;
步骤案例:证明,如果一个节点的所有直接子树都满足Cl,那么以节点本身为根的树。

这两种类型的证明树是什么样的?

考虑用于基本情况的树
您可以拥有的最小证明树是只有一个元素的证明树。 这些树只需写下一个陈述 α,但它尚未用于任何东西和证明树的其余部分仍然需要构建。
我们拥有的唯一规则允许我们构建这样的树的是
要么 α ∈ Γ,即它是假设之一
或 α = β ∨ ¬β,即我们使用排中律

在这篇文章中,我已经写了排中律

考虑阶梯情况的树
对于步骤情况,我们假设树的根有孩子,所以根(证明中使用的最后一条规则)必须是消除或引入规则之一∧ 或 →,否则 (⊥E)。
请记住,我们假设这些是唯一相关的连接词。

稳健性定理
如果 Γ ⊆ Φ 和 α ∈ Φ,则 Γ ⊢ α ⇒ Γ |= α
证明:通过证明树的结构归纳
基本情况:
如果 α ∈ Γ,则 Γ |= α 微不足道,因为任何估值都可以在 Γ 中为真必须使 α 为真;
如果 α = β ∨ ¬β,则 α 是重言式,因为 ∨ 的真是定义。 无论您使用什么估值,α都会评估为真。
步骤案例:
这是使用的最后一条规则是 (→I) 时的证明。
任何 (→I) 证明都通过推导某些 α1、α2 的 Γ ⊢ α1 → α2 得出结论。
直接子证明是 Γ, α1 ⊢ α2 并且我们的归纳假设说
这个证明证明了一些有效的东西,即Γ, α1 |= α2。

一致性
FACT: Γ consistent ⇔ no α satisfies Γ ⊢ α and Γ ⊢ ¬α
Proof:
if Γ ⊢ α and Γ ⊢ ¬α for some α, then Γ ⊢ ⊥ by (¬E)
if Γ ⊢ ⊥, then Γ ⊢ α and Γ ⊢ ¬α by (⊥E)
FACT:
Γ ∪ {α} inconsistent ⇒ Γ ⊢ ¬α
Γ ∪ {¬α} inconsistent ⇒ Γ ⊢ α
Proof: using (¬I) and (¬¬E),看这里
FACT: every satisfiable set of formulas is consistent
Proof:
Γ inconsistent ⇒ Γ ⊢ ⊥
⇒ Γ |= ⊥ (by soundness)
⇒ there’s no v such that [α] = 1 for all α ∈ Γ
⇒ Γ is unsatisfiable
如果我们能证明一致性意味着可满足性,然后我们得到完整性

林登鲍姆引理
每个一致的集合都包含在一个最大一致的集合中。
证明:假设Γ一致,令α0, α1, α2, . . . 是所有公式的列表。
构造一个无限链Γ ⊆ Γ1 ⊆ · · · ⊆ Γ
那么每个Γn在构造上是一致的,他们的联合,Γ*也是一致的:
假设不是,所以 Γ* ⊢ ⊥
然后 ∆ ⊢ ⊥ 对于一些有限的 ∆ ⊆ Γ∗ 因为所有的证明都是有限的;每个 α ∈ ∆ 输入 Γ*在施工的某个阶段
因此 ∆ ⊆ Γk 和因此 Γk ⊢ ⊥ 对于一些 k
这与 Γk 在构造上是一致的事实相矛盾

一致性意味着可满足性
宣称: 每组一致的公式都是可满足的。
证明:假设 Γ 是一致的,让 Γ∗ 是一个最大一致集,包含Γ。

完整性
从我们所看到的情况来看:
小完备性定理,一组公式是一致的当且仅当它是可满足的

命题逻辑的完备性定理
如果 Γ ⊆ Φ 和 α ∈ Φ,则 Γ | = α ⇒ Γ ⊢ α

Prop 的健全性和完整性
我们已经看到 Prop 是合理的。
所以:Γ ⊢ α ⇔ Γ |= α

关于 Prop 的一些最终事实
紧致定理
当且仅当 Γ 的每个有限子集都可满足时,集合 Γ 是可满足的。
证明:
如果 Γ 是可满足的,那么每个子集也是可满足的
反过来,
Γ 不可满足 ⇒ Γ 不一致
⇒ Γ0 ⊢ ⊥ 对于一些有限的 Γ0 ⊆ Γ
⇒ 一些有限的 Γ0 ⊆ Γ 不一致
⇒ 一些有限的 Γ0 ⊆ Γ 是不可满足的

总结
命题逻辑研究简单设置中的健全性和完整性
我们稍后会看到的谓词逻辑仍然是完整的
哥德尔表明,更强大的逻辑可能是不完整的日常数学基于某些重言式不能成立的逻辑衍生的,即数学中有些事情是真实的,但不可能证明

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值