机器学习 | Python实现基于GRNN神经网络模型

GRNN是Nadaraya-Watson估计器的改进,以核为权重的局部加权平均值进行回归。文章介绍了GRNN的基本原理,探讨了各向同性GRNN(IGRNN)在特征选择中的作用,以及各向异性GRNN(AGRNN)如何通过特征带宽校准实现嵌入式特征选择。模型设计部分提供了更多细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基本介绍

GRNN 是 Nadaraya-Watson 估计器神经网络的改进,其中向量自变量上的标量的一般回归被计算为以核作为加权函数的局部加权平均值。 该算法的主要优点是其校准只需要为核估计定义适当的带宽。 因此,GRNN 比其他前馈人工神经网络算法更快。
传统的 GRNN 架构基于对所有特征使用一个唯一的带宽值。 这种各向同性的网络结构(IGRNN)可以用作特征选择的包装器。 这种方法允许对输入空间进行完整的描述,识别相关、不相关和冗余的特征。 具体来说,冗余和不相关性与相关性的识别相关,即使用输入空间的其他特征对输入变量的非线性可预测性。 各向异性(或自适应)GRNN (AGRNN) 是 GRNN 的演变,其中为每个特征对应的带宽赋予不同的值。 带宽的适当校准将根据输入特征的解释能力来缩放输入特征。 具体来说,较大的平滑参数将导致相关特征的判别力较低,反之亦然。 因此,AGRNN 可以被认为是一种嵌入式特征选择方法,其中内核的带宽值表示特征相关性的度量。

模型设计

import numpy as np
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习之心

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值