打造三甲医院人工智能矩阵新引擎(二):医学影像大模型篇--“火眼金睛”TransUNet

一、引言

1.1 研究背景与意义

在现代医疗领域,医学影像作为疾病诊断与治疗的关键依据,发挥着不可替代的作用。从传统的X射线、CT(计算机断层扫描)到MRI(磁共振成像)等先进技术,医学影像能够直观呈现人体内部结构,为医生提供丰富的诊断信息,涵盖疾病识别、病灶定位、疾病分期以及疗效监测等多个关键环节。例如,在肿瘤诊疗中,通过影像可精准确定肿瘤的位置、大小、形态,辅助医生制定手术方案或评估放化疗效果;在心血管疾病诊断里,心脏影像能清晰展现心肌状况、血管狭窄程度,助力病情判断与治疗决策。

然而,传统医学影像分析高度依赖医生的专业知识与经验,面对海量影像数据,人工阅片耗时费力,且主观性强,易受疲劳、经验差异等因素干扰,导致误诊、漏诊风险增加。据相关统计,在肺部小结节筛查中,人工阅片的误诊率可达 20% - 30%,漏诊率约 10% - 20%。这不仅影响患者的及时救治,还给医疗资源带来巨大压力。

评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Allen_Lyb

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值