
医疗人机交互层技术实施方案
一、多模态交互体系
1. 医疗语音识别引擎
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
import torchaudio
class MedicalASR:
def __init__(self):
self.processor = Wav2Vec2Processor.from_pretrained(
"medical-wav2vec2-base-zh-CN")
self.model = Wav2Vec2ForCTC.from_pretrained(
"medical-wav2vec2-base-zh-CN")
self.resampler = torchaudio.transforms.Resample(
orig_freq=48000, new_freq=16000)
self.medical_terms = {
"xianweijing": "纤维镜",
"ganmeisu": "干酶素"
}
def transcribe(self, audio_path):
waveform, sample_rate = torchaudio.load(audio_path)
waveform = self.resampler(waveform)
inputs = self.processor(
waveform.squeeze().numpy(),
sampling_rate=16000,
return_tensors="pt",
padding="longest"
)
with torch.no_grad():
logits = self.model(
inputs.input_values,
attention_mask=inputs.attention_mask
).logits
pred_ids = torch.argmax(logits, dim=-1)
text = self.processor.batch_decode(pred_ids)[0]
return self._correct_medical_terms(text)
def _correct_medical_terms(self, text):
for term, correct in self.medical_terms.items():
text = text.replace(term, correct)
return text
2. 无障碍交互系统
class AccessibilityInterface {
private eyeTracker: EyeTracker;
private hapticDevice: HapticController;
constructor() {
this.eyeTracker = new TobiiEyeX();
this.hapticDevice = new HapticGlove();
}
setupInteraction() {
document.addEventListener('eyegaze', (event) => {
const target = document.elementFromPoint(
event.detail.x,
event.detail.y
);
if (target?.classList.contains('focusable')) {
this.hapticDevice.vibrate('soft');
target.dispatchEvent(new MouseEvent('hover'));
}
});
speechSynthesis.addEventListener('start', () => {
this.hapticDevice.vibrate('double');
});
}
private vibrationPatterns = {
confirm: [100, 50, 100],
alert: [300, 100, 300],
progress: [50, 50]
};
}
3. 情境感知服务
public class ContextAwareService {
private BeaconDetector beaconDetector;
private PatientStatusPredictor predictor;
public ContextAwareService() {
this.beaconDetector = new AltBeaconScanner();
this.predictor = new RandomForestPredictor();
}
public void startMonitoring(String patientId) {
beaconDetector.registerListener((beacons) -> {
Beacon nearest = Collections.min(beacons,
Comparator.comparingDouble(Beacon::getDistance));
double[] features = extractFeatures(nearest);
int predictedStage = predictor.predictStage(features);
updateUI(patientId, nearest.getLocation(), predictedStage);
});
}
private double[] extractFeatures(Beacon beacon) {
return new double[] {
beacon.getDistance(),
beacon.getRssi(),
System.currentTimeMillis() / 1000.0
};
}
}

二、智能容错机制
1. 对话状态跟踪(DST)
class MedicalDST:
def __init__(self):
self.tokenizer = AutoTokenizer.from_pretrained(
"bert-base-chinese-medical")
self.model = AutoModelForSequenceClassification.from_pretrained(
"bert-base-chinese-medical",
num_labels=len(DIALOG_STATES)
)
self.state_machine = {
"初诊": ["主诉", "病史", "检查"],
"复诊": ["报告解读", "治疗方案"]
}
def track_state(self, dialog_history):
context = "\n".join(dialog_history[-3:])
inputs = self.tokenizer(
context,
return_tensors="pt",
truncation=True,
max_length=512
)
outputs = self.model(